
Dicke State Generation and Extreme Spin Squeezing via Rapid Adiabatic Passage

Sebastian C. Carrasco ,1,* Michael H. Goerz ,1 Svetlana A. Malinovskaya ,2

Vladan Vuletić ,3 Wolfgang P. Schleich ,4 and Vladimir S. Malinovsky 1

1DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, USA
2Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA

3Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

4Institute of Quantum Physics and Center for Integrated Quantum Science and Technology (IQST), Ulm University, Ulm, Germany

(Received 30 May 2023; accepted 15 March 2024; published 12 April 2024)

Considering the unique energy level structure of the one-axis twisting Hamiltonian in combination with
standard rotations, we propose the implementation of a rapid adiabatic passage scheme on the Dicke state
basis. The method permits to drive Dicke states of the many-atom system into entangled states with
maximum quantum Fisher information. The designed states allow us to overcome the classical limit of
phase sensitivity in quantum metrology and sensing. We show how to generate superpositions of Dicke
states, which maximize metrological gain for a Ramsey interferometric measurement. The proposed
scheme is remarkably robust to variations of the driving field and has favorable time scaling, especially for
a small to moderate (∼1000) number of atoms, where the total time does not depend on the number of
atoms.
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Quantum sensors have the potential to go beyond their
classical counterparts [1–7] and reach the fundamental
quantum precision limit, the Heisenberg limit (HL) [8,9],
by fully exploiting nonclassical properties of matter. In that
limit, measurement precision scales proportional to the
number of atoms. In contrast, the standard quantum limit
(SQL) scales proportional to the square root of the number
of atoms. To achieve enhanced scaling, it is imperative to
find robust ways to create ultrasensitive entangled quantum
states and engineering protocols to utilize them. The
quantum advantage thus obtained will boost the precision
of interferometric devices such as accelerometers [10],
gyroscopes [11,12], and gravimeters [13]. Further appli-
cations are the search for dark matter [14], timekeeping
[15], gravitational wave detection [16], geodesy [17–19],
and ultraprecise tests of the fundamental laws of physics
[20,21]—all fields where ultraprecise metrology plays the
crucial role.
One common method of creating collective entangle-

ment is through an effective one-axis twisting (OAT)
Hamiltonian [22], often engineered by exploiting the
nonlinear interaction between the atoms and the light inside
a cavity [7,23–26]. That Hamiltonian squeezes the quantum
state quasiprobability distribution, creating nonclassical
correlations that reduce the variance of one measurement
quadrature while increasing the variance in the orthogonal
direction. Thus, squeezing can enhance precision in
Ramsey interferometric measurements [27]. The maximum
metrological gain in the context of Ramsey interferometry
is achieved with particular squeezed states known as

extreme spin-squeezed (ESS) states [28–31]. We consider
the dynamics of the system in the Dicke basis, the set of
eigenstates jS;mi of the operator Ŝz. In general, ESS states
are a superposition of Dicke states, but as the squeezing
increases, they gravitate to a single Dicke state.
Collective rotations generate transitions between Dicke

states, which in combination with applications of the OAT
Hamiltonian steer the N-atom system towards the desired
ESS states. One widely used control scheme is to use a
fixed-area resonant pulse scheme, that is, a train of Rabi
pulses [32,33]. Precise control of the pulse power and
duration is required for this method to be effective since
errors accumulate with the pulse train [34].
An alternative is to use rapid adiabatic passage (RAP) to

generate the state transitions [35–39]. In this case, the
transition frequency sweeps through the resonance with the
excitation frequency as in the Landau-Zener model [40],
and the frequency chirp leads to a robust population
transfer [41,42]. Shortcuts to adiabaticity may be used to
speed up the process [43,44].
Here, we propose an implementation of the RAP method

to create extreme spin-squeezed states and pure Dicke
states. We consider N noninteracting two-level atoms or
spin one-half particles under the action of the Hamiltonian

Ĥ ¼ χŜ2z þ βðtÞŜz þΩðtÞŜx; ð1Þ

where Ŝj are the components of the collective spin operator,
j ¼ x, y, z. The first term is the entangling OAT interaction,
and χ is the shearing parameter. The second and third terms
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are rotations around the z and x axes. We are addressing the
situation in the limit where dissipation is weak, and the
system is well represented by the Hamiltonian of Eq. (1). In
the context of the Hamiltonian implementation using the
interaction between atoms and light in a cavity, this case
corresponds to the limit of very strong cavity coupling. The
Hamiltonian can also be realized in superconducting qubits
[45] or exploiting the Ising interactions between trapped
ions [46] and Rydberg atoms [47,48].
The equation of motion for the probability amplitude

being in a Dicke state jS;mi is

iȧm ¼ EmðtÞam þ ΩðtÞ
2

ðζþamþ1 þ ζ−am−1Þ; ð2Þ

where Em ¼ χm2 þ βðtÞm is the state energy, ζ� ¼ ½ðS ∓
mÞðS�mþ 1Þ�1=2 are transition elements, and m ¼ −S;
−Sþ 1;…; S − 1; S forN ¼ 2S particles. We focus here on
an even number N of atoms, for which there is a unique
ground state jS; 0i [49].
According to Eq. (2), only neighboring Dicke states are

coupled. Therefore, it is possible to generate successive
transitions m ¼ n → n� 1, or to create a superposition of
several Dicke states by properly choosing the time-
dependent function βðtÞ in Eq. (1) and controlling the
duration of the field ΩðtÞ. For example, we can start from
the coherent spin state (CSS) jS; Si and then use various
control methods [50] to prepare a desired Dicke state or
other correlated quantum states.
To evaluate the usefulness of a state for high-precision

measurement, we use the quantum Fisher information
(QFI) [51–53]. For pure states, the QFI of a state jψi is
F j ¼ 4ðhψ jŜ2j jψi − hψ jŜjjψi2Þ, with j ¼ x, y, z. For
the Dicke state jS;mi, we find F z ¼ 0 and F x;y ¼
4ΔS2x;y ¼ N2=2 − 2m2 þ N. Thus, Dicke states are not
sensitive to perturbations proportional to Sz (due to their
axial symmetry on the Bloch sphere). In contrast, x, y
components depend on m2 and demonstrate a scaling
transition from the SQL, F x;y ¼ N for the jN=2; N=2i
state (a CSS), to F x;y ¼ N2=2þ N for the jN=2; 0i Dicke
state. According to the Cramer-Rao bound, the maximum
precision of a phase estimation is bounded by the QFI as
Δφ2

x;y;z ≥ 1=F x;y;z [51]. Thus jN=2; 0i is reaching the HL
scaling for x and y (up to the prefactor 1=2) for N ≫ 1.
To prepare the jN=2; 0i state via RAP, we apply the

linear-chirping function βðtÞ ¼ αtuð−tÞ, i.e., the chirp rate
α stops at t ¼ 0 due to the Heaviside step function uð−tÞ. In
this case, the linear chirping tunes the transitions between
the adjacent Dicke state to the resonance, and appropriate
ΩðtÞ efficiently transfers population from the initial CSS to
a target Dicke state or Dicke state superposition.
Figure 1 presents both the diabatic and adiabatic pictures

of the multiple sequential crossings between the state
energies, EmðtÞ, which become avoided crossings due to

the coupling ΩðtÞ. The crossing time between adjacent
Dicke states m and m − 1 is tm;m−1 ¼ χð1 − 2mÞ=α, pro-
viding resonances between adjacent Dicke states with
period τ ¼ 2χ=α. This comes from the interplay of the
quadratic and linear structure of Ŝ2z and Ŝz eigenvalues, in
complete analogy with the RAP between momentum states
using frequency-chirped standing-wave fields [34,35].
In the adiabatic limit, each sequential avoided crossing

can be considered independent, and the Dicke state
population dynamics is described by the well-known
Landau-Zener model [40]. Therefore, if at t ¼ −∞ the
whole N-atom system population is in the CSS (single
Dicke state jN=2; N=2i), then, according to the adiabatic
theorem, the total evolution of the system happens in the
single adiabatic state (the lowest solid line in Fig. 1). Since
the chirp stops at t ¼ 0 and the coupling ΩðtÞ is turned off
soon after, the last avoided crossing is between the Dicke
states jN=2; 1i and jN=2; 0i. Therefore, when adiabatic
conditions are satisfied for all sequential crossings, the
system population will be efficiently transferred to the
target Dicke state jN=2; 0i at the final time. This qualitative
picture is independent of the number of atoms, as long as
adiabaticity is maintained (Ω2

max=α ≫ 1).
In Fig. 2, we show the dynamics of the Dicke state

populations using RAP from j5; 5i to j5; 0i with fidelity
ϵ2 ¼ 0.9996. To be realistic, we are turning ΩðtÞ on and
off with a Blackman shape. The value at the plateau is
Ωmax ¼ 0.88χ. There is a residual population of the j5;�1i
states building up at the end, which returns to the target
j5; 0i state as the pulse ΩðtÞ is turned off. This transient
effect is known as adiabatic population return for off-
resonant excitation schemes [50].
The results shown in Fig. 2 are extremely robust to

variations in the chirp rate α and the coupling strengthΩðtÞ,
see Supplemental Material [54]. Indeed, it is sufficient to

FIG. 1. Example of the energy levels of the five lowest Dicke
states as a function of time. The solid lines represent the
instantaneous eigenvalues of the Hamiltonian in Eq. (1) (adia-
batic picture), and the dashed curves are the diagonal values, Em,
(diabatic picture). The coupling pulse goes up to Ωmax ¼ 0.4χ. It
starts to turn off at t ¼ 0 and is entirely off at αt=χ ¼ 1. The chirp
rate is α ¼ 0.1χ2.
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have a slow turn-on before the first crossing, between
energies E5ðtÞ and E4ðtÞ of the j5; 5i and j5; 4iDicke states
here. We set the plateau to start at t1 ¼ −Nχ=α with a
switch-on time of ton ¼ 2χ=α, and choose t2 ¼ 0 as the
plateau end with toff ¼ 2χ=α for the switch-off time. A time
delay of the plateau end to t2 ¼ χ=α slightly reduces the
fidelity to ϵ2 ¼ 0.9992. Increasing the number of atoms N
requires only an earlier start of the plateau time by a
corresponding number of periods τ to accommodate more
Dicke state crossings. The adiabatic picture in Fig. 1 is
valid for an arbitrary number of the atoms for the target
Dicke state jN=2; 0i. It is also possible to choose any other
Dicke state as a target, which can be efficiently prepared
with high fidelity by applying the same excitation scheme.
To selectively prepare another Dicke state jN=2; ni, we
need to adjust the plateau duration time so that the last
avoided crossing is between states jN=2; nþ 1i
and jN=2; ni.
At the top of Fig. 2, we show a Wigner representation

[55,56] (see Supplemental Material [54]) of the system
state on the generalized Bloch sphere at selected times.
There are fringes indicating atomic coherence. Note that
there is a reduced variance in the z direction at the final
time. In fact, the variance ΔŜ2z is zero for any Dicke state,
including the jN=2; 0i state. However, there is no clear
orientation of the total spin, the state is symmetric in the x-y
plane, and the mean spin components hŜx;y;zi of the state
are zero. Therefore, the standard Ramsey interferometry
with this state has zero contrast. However, it is possible to
design another measurement scheme that can utilize the full
quantum advantage of the Dicke state jN=2; 0i using a
twist-and-turn strategy to decode the phase imprinted in the
quantum state after free evolution as in [57,58].
To demonstrate the efficiency and robustness of

the proposed scheme, in Fig. 3, we present the QFI

time-evolution during the RAP process with several values
of the chirp rate. Initially, the system is in the Dicke state
jS; Si, the QFI equals N ¼ 10. The QFI dynamics depend
strongly on the chirp rate, yet all regimes give the same final
result. For α ¼ 10−4χ2, the dynamics of the Dicke state
population is fully adiabatic; the population goes sequen-
tially from one Dicke state to the next and, at most, only two
adjacent states are populated at any time. In the plateau areas,
the values of the QFI correspond to the QFI of individual
Dicke states, F x ¼ N2=2 − 2m2 þ N. The reduction of the
QFI in this regime can be evaluated by calculating QFI
for a two-Dicke-state superposition jψi ¼ cos ζ=2jS;mi þ
eiϕ sin ζ=2jS;m� 1i. We find F z ¼ sin2 ζ, F x ¼ N2=2þ
N − 2m2 þ 2ð2m� 1Þsin2ζ=2 − sin2ζcos2ϕðN2=4 −m2 þ
N=2 ∓ mÞ, and F y ¼ N2=2 þ N − 2m2 þ 2ð2m � 1Þ
sin2ζ=2 − sin2ζsin2ϕðN2=4 − m2 þ N=2 ∓ mÞ. These
expressions explain the substantial reductions in the value
of F x when equal superpositions are created (ζ ¼ π=2),
especially asm decreases. The dynamics of the QFI in the y
direction, F y, (not shown here) is qualitatively similar and
well correlated with the analytic expression above.
For larger chirp rates, α ¼ 10−2χ2, more Dicke states are

populated, and the QFI reduces even further at intermediate
times. For α ¼ 10−1χ2, we see that the QFI stays most of
the time below the SQL (F x ¼ N), since many Dicke states
are populated simultaneously. However, a smooth switch-
off of the coupling and the chirp guarantees the adiabatic
passage to the target Dicke state.
A notable feature of the proposed RAP scheme is that the

chirp rate α can be increased at least proportional to N (see
Supplemental Material [54]). Assuming a χ independent of
N, we can conclude that the total time of the RAP scheme,
which is roughly Nτ ¼ Nχ=α, can be independent of N.
Moreover, in the limit where each transition is traversed at
its maximum speed, the overall time of the RAP scheme
could even decrease proportionally to logðNÞ=N. The

FIG. 2. Population dynamics of the ten-atom Dicke states. The
solid black line shows the coupling pulse shape, ΩðtÞ. The chirp
rate is α ¼ 0.1χ2.

FIG. 3. Quantum Fisher information, F x, as a function of time
for the RAP transfer from jS; Si to jS; 0i for three values of
ᾱ ¼ α=χ2, ᾱ1 ¼ 10−4, ᾱ2 ¼ 10−2, and ᾱ3 ¼ 10−1; N ¼ 10. We
also present snapshots of the Wigner function of the collective
state at the selected time.
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assumption that χ is independent of N is possible for
moderate values of N (up to N ∼ 1000) and could be
accomplished by engineering the squeezing pulse, as
discussed in [7,26] and the Supplemental Material [54].
In the case of larger atom numbers, χ scales as 1=N. Yet, the
RAP is still efficient as long as the turn-on and off time of
the coupling field is adjusted to compensate for the
reduction of the energy difference between adjacent
Dicke states. In that case, the total time scales as logðNÞ
for the non-negligible values of χ.
The above-described RAP scheme can be modified to

prepare another class of correlated quantum states, provid-
ing sensitivity enhancement for Ramsey spectroscopic
measurements. The metrological gain can be evaluated
by the Wineland squeezing parameter [59,60]

ξ2 ¼ Δφ2=Δφ2
CSS ¼ ΔŜ2zN=jhŜxij2; ð3Þ

where Δφ2 is the variance of a phase estimation for an
entangled state and Δφ2

CSS is the result for a coherent state.
Here, we have chosen z as the squeezing direction and x as
the mean spin orientation.
From Eq. (3), we can see that we need to minimize the

quadrature in the z direction, ΔŜz, while keeping the
projection onto the x axis, hŜxi, as high as possible, since it
defines the maximum contrast in the interferometric proto-
col. It has been shown [28–31] that the optimal ESS states
that minimize ξ2 under the constraint of the fixed signal
contrast must satisfy the equation ½χŜ2z − ΩŜx�jΨiESS ¼
λjΨiESS. Interestingly, as the signal contrast approaches
zero, the ESS state becomes the Dicke state jS; 0i [29,31],
and the squeezing parameter diverges. Indeed, the more
metrologically useful the ESS states become, the more they
approach the Dicke state jS; 0i, and are well-approximated
by a linear combination of the Dicke states jS; 0i and
jS;�1i. For a fixed value of contrast, ESS states give HL
scaling [31]. Therefore, creating them allows us to achieve
such scaling for Ramsey interferometry.
During the RAP generating the jS ¼ 5; 0i Dicke state

(Fig. 2), we observed transient population in the
jS ¼ 5;�1i states. To create the ESS state, we abruptly
turn off the coupling, ΩðtÞ, which results in some pop-
ulation of the jS;�1i states at final time, thus creating the
desired ESS state.
Figure 4 shows the ESS state generation via fast turn-off

of the coupling during a RAP pulse aiming towards jS; 0i.
The main change in the time dependence of the coupling
compared to the one in Fig. 2 is that we set the switch-off
time of the coupling pulse to toff ¼ 0.583χ=α and choose
the turn-off time t2 ¼ 0.5χ=α. The maximum overlap with
the ESS target state is ϵ2 ¼ 0.9994, while the averaged spin
projection onto the x axis is hŜxi ¼ S=2. Despite these
modifications, a large parameter space region still gives
excellent fidelity (see Supplemental Material [54]).

Since the created ESS state is not an eigenstate of Ŝ2z ,
which is the system’s Hamiltonian after the coupling and
the chirp are both turned off, the ESS state infidelity, 1 − ϵ2,
oscillates with the frequency proportional to the shearing
strength, χ, as shown in the bottom panel of Fig. 4. The
oscillations are relatively slow, and they end when turning
off the OAT term in the Hamiltonian, Eq. (1), to achieve
maximum fidelity. The ESS-state Wigner function is shown
in the inset of Fig. 4. We observe a reduced variance in the z
direction, while there is a definite orientation of the total
spin (hŜxi ¼ S=2) that ensures significant contrast of the
Ramsey signal, as opposed to the case utilizing the Dicke
state jS; 0i.
So far, for illustration purposes, we have used only a

small number of atoms. However, the proposed method
works for arbitrary N. To demonstrate this, in Fig. 5, we
plot the metrological gain of the RAP-produced state with

FIG. 4. Generation of the ESS state via RAP, the chirp rate is
α ¼ 0.1χ2. Upper panel: the Dicke state population dynamics, the
time-dependent coupling with the maximum Ωmax ¼ 0.88χ is
shown by a black solid line. The Wigner function of the generated
state at t ¼ 5χ=α is in the inset. Bottom panel: the infidelity as a
function of time.

FIG. 5. Comparison between the metrological gain as a
function of the atom number for ideal ESS states and ESS states
created by RAP. The results share the HL scaling.
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respect to the CSS. As a target state, we use an ESS state
with contrast hŜxi ¼ S=2. The metrological gain obtained
with the RAP-produced states is practically identical to the
ESS-state gain with the HL scaling.
To conclude, we have demonstrated the creation of many-

atom entangled states via RAP between Dicke states. The
generated jS; 0i-Dicke andESS statesmaximize theQFI and
metrological gain for Ramsey interferometry. We have
shown how to steer the system into the Dicke state jS; 0i
and how to prepare an ESS state, providing HL scaling. The
RAP technique is possible due to the unique structure of the
nonlinear OAT Hamiltonian. The process is exceptionally
robust to driving field variations and variations in the
number of atoms, eliminating the requirement of a precise
count. In addition, the total time of the RAP is independent
of N for moderate N. These interesting properties open up
the possibility of applying the RAP to create metrologically
useful many-atom entangled states that are not easily
accessible with other techniques, such as twist-and-turn
strategies, that suffer from the accumulation of gates error
[61] and require substantial optimization efforts [31] that
become challenging to implement as N increases [32–34].
The technique could also work to prepare GHZ and various
cat states. For instance, one could drive the system into
jS;−Si (instead of jS; 0i) and adjust the turn-on of the pulses
so that the first transition only transfers half of the pop-
ulation, thus creating a superposition of jS; Si and jS;−Si.
As an extension of this work, it could be beneficial to
consider a shortcut-to-adiabaticity scheme [43,44] to speed
up RAP, as well as applying advanced techniques of optimal
quantum control [62,63] to maximize the fidelity (and
metrological gain) and minimize losses due to decoherence,
dephasing, and photon scattering. The remarkable robust-
ness of RAP may also allow for the implementation of the
protocol via Ising interactions that approximate the OAT
Hamiltonian [46–48], thus broadening the range of appli-
cations to other research areas.
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