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ABSTRACT

We investigate the possible realization of an ultracold-atom rotation sensor that is based on recently proposed tractor atom interferometry
(TAI). An experimental design that includes the generation of a Laguerre–Gaussian-beam-based “pinwheel” optical lattice and multi-loop
interferometric cycles is discussed. Numerical simulations of the proposed system demonstrate TAI rotation sensitivity comparable to that of
contemporary matter-wave interferometers. We analyze a regime of TAI rotation sensors in which nonadiabatic effects may hinder the sys-
tem’s performance. We apply quantum optimal control to devise a methodology suitable to address this nonadiabaticity. Our studies are of
interest for current efforts to realize compact and robust matter-wave rotation sensors, as well as for fundamental physics applications
of TAI.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1116/5.0175802

I. INTRODUCTION

Recent progress in atom interferometry (AI) has raised promising
prospects in fundamental physics,1–5 precision measurements,6–9 and
practical applications,10 including geodesy, seismology, and inertial
sensing with atomic acceleration and rotation sensors. Focusing on
rotation, the interferometric measurement relies on the Sagnac phase
/s ¼ 2EA=hc2 arising between wave-packets of energy E that are
counter-rotating around an area A. Since their first demonstration in
1913,11 optical Sagnac interferometers have achieved sensitivities
beyond 10�10 rad/s in fiber-optic gyroscopes (FOGs) and large-area
pinwheel laser-based setups. The motivation to design Sagnac atom
interferometers stems from the potential orders-of-magnitude
enhancement in sensitivity that scales inversely with the associated de
Broglie wavelength.12

Previous experiments and proposals for the realization of Sagnac
AIs include free-space13–16 and point-source interferometers,17–19 where
atomic fountains or dropped atomic clouds propagate freely along inter-
fering paths, as well as guided-wave AIs.20–23 Despite their much
smaller particle flux and interferometric areas, these designs have
recently surpassed the sensitivity of FOGs. However, free-space AIs can
be space- and power-intensive, as their sensitivity scales as the interro-
gation time squared,12 fueling a push to increasing drop heights and

apparatus sizes in earth-based experiments. In order to achieve higher
sensitivity combined with compact setups, multi-pass guided-wave
designs have been proposed based on trapped ions,24 weak magnetic
traps,20,25,26 time-averaged adiabatic potentials,27–31 toroidal optical
traps,32 and optical waveguide formed by collimated laser beams.23

The performance of free-space and atom-guide AIs is often lim-
ited by the dispersion of the atomic wave functions along unconfined
degrees of freedom, inefficient closure of interferometric paths, and
Landau–Zener tunneling in spinor implementations.33–35 Tractor
atom interferometry (TAI),36 a recently proposed technique, seeks to
address these issues by uninterrupted three-dimensional (3D) confine-
ment and transport of atomic wave packets along programable trajec-
tories using optical or other traps. Robust AI implementations for
acceleration sensing using deep, spin-dependent optical potentials and
optical tweezers have been explored in recent proposals.36–39

In this paper, we present investigations on a possible realization
of a rotation sensor using TAI. Our azimuthal optical lattice and its
matter-wave Hamiltonian are outlined in Sec. II. Aspects of the inter-
ferometer operation and its matter-wave dynamics are explained in
Sec. III. From our numerical quantum-dynamics simulations pre-
sented in Sec. IV, we infer the sensitivity and confirm agreement with
semiclassical predictions that apply in the adiabatic limit. In Sec. V,
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we then quantify and discuss possible nonadiabatic excitations during
operation of the TAI interferometer. Results that incorporate the appli-
cation of optimal control theory to minimize detrimental nonadiabatic
effects are presented in Sec. VI. Finally, in Sec. VII, we consider several
technical issues relevant to possible experimental implementations of
TAI. The paper is concluded in Sec. VIII.

II. PINWHEEL OPTICAL LATTICE DESIGN

As depicted in Fig. 1, the principles of spinor-TAI36 can be lever-
aged for rotation sensing by designing circular trajectories along which
spin-dependent potentials carry trapped atomic wave-function com-
ponents in opposite directions. The potentials must be designed to
strongly confine the trapped wave functions in all spatial dimensions
to minimize nonadiabatic effects and dispersion. The trajectory pairs
are closed and cover a half- or full-integer number of loops in each tra-
jectory. This can be realized by a pair of deep, spin-dependent, coun-
ter-rotating pinwheel optical lattices. Such lattices can be created using
co-propagating Laguerre–Gaussian (LG) beams,40,41 interference of
Gaussian and hollow beams with a quadrupole magnetic moment,42

or interference of LG beams with plane waves in the presence of a con-
ical magnetic field43 for twisted boundary conditions. Here, we focus
on the first approach, which is an all-optical technique suitable to cre-
ate both bright (red-detuned) and dark (blue-detuned) lattices with
several, widely tunable parameters.

The electric field of an LG beam with azimuthal index l, zero
radial index, frequency fl, and wave vector kl propagating along the
positive z-direction is given in phasor notation and cylindrical coordi-
nates r � ðr; h; zÞ as

LGlðr; tÞ ¼ Elðr; zÞffiffiffiffiffiffi
c�0

p ei 2pfl tþUlðzÞþlh�kl zþ r2

2RðzÞ
� �� �

; (1)

where c and �0 are the speed of light and vacuum permittivity, respec-
tively, and with the amplitude

Elðr; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4P

pjlj!wðzÞ2
s ffiffiffi

2
p

r
wðzÞ

 !jlj

e
� r2

wðzÞ2 ; (2)

where P is the laser beam power and wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=zRÞ2

q
is the

beam-waist parameter with the Rayleigh range zR ¼ pw2
0=k. The

radius of the phase front’s curvature is RðzÞ ¼ zð1þ ðzR=zÞ2Þ, and
UlðzÞ ¼ ðjlj þ 1Þarctanðz=zRÞ is the Gouy phase. Along the z-axis, the
LG beam has an optical vortex line featuring a phase singularity and
vanishing intensity. Due to the azimuthal (h) phase dependence, the
interference of two co-propagating LG beams with modes l1 and
l2 ¼ l1 þm and frequency f1 and f2 ¼ f1 � Df results in an intensity
distribution

jEj2ðr; tÞ ¼ E2
l1ðr; zÞ þ E2

l2ðr; zÞ þ 2E l1ðr; zÞEl2ðr; zÞ

� cos

"
2pðDf Þt � DUðzÞ � 2pðDf Þz

c

� pr2

c
f1

R1ðzÞ �
f2

R2ðzÞ
� �

�mh

#
: (3)

The salient feature of this interference pattern is the sinusoidal
modulation of intensity in the azimuthal (h) direction, in the very last
term. In experimentally relevant cases, e.g., for a pinwheel optical lat-
tice of radius 10–100lm rotating at 10–1000Hz, the terms propor-
tional to Df =c and r2=c inside the cosine are negligible. The difference
in Gouy phase, DUðzÞ ¼ m arctanðz=zRÞ, in principle, twists the pin-
wheel azimuthally as a function of z. However, as described in the fol-
lowing, the atoms are further trapped along the z direction by a
separate, far off-resonant one-dimensional static optical lattice with
lattice planes extending transverse to z. The twisting angle due to the
variation of DUðzÞ within one spatial period of the static z-lattice is
typically less than 1mrad and is, therefore, negligible. With these
approximations, the optical potential near z¼ 0 reads

Vðr; tÞ � V1ðrÞ þ V2ðrÞ cos ½2pðDf Þt �mh� (4)

with V1ðrÞ ¼ �ða=2c�0ÞðE2
l1ðr; 0Þ þ E2

l2ðr; 0ÞÞ and V2ðrÞ ¼ �ða=c�0Þ
� E l1ðr; 0ÞEl2ðr; 0Þ, where a is the polarizability of the selected atomic
state. Therefore, a pair of LG beams with a small detuning of Df and
with l-indices differing bym effectively create a pinwheel optical lattice
with m azimuthal lattice sites, rotating at a tunable angular velocity
x ¼ 2pDf =m.

A counter-rotating pinwheel lattice of similar size can be obtained
from a second pair of LG beams with opposite detuning that are
superimposed over the first pair. The pinwheel lattices can be made
spin-selective by tuning the wavelengths of the beam pairs forming the
lattice so that they trap different atomic spin states. A particular exam-
ple of such spin states are the j5S1=2; F ¼ 1;mF ¼ 0i and j5S1=2;
F ¼ 2;mF ¼ 0i states of 87Rb, with the wavelengths of the respective
pinwheel lattices set near the D1 line (�795nm).38 We discuss several
technical details of such spin-dependent lattices in Sec. VII.

Trapping in such lattices requires blue-detuned light, where the
atoms are trapped near intensity minima. In that case, the photon scat-
tering rate of the atoms in the lattice light is minimal, thereby minimiz-
ing both photon-scattering-induced decoherence of the interferometer
as well as decoherence caused by trap-laser intensity fluctuations. The
beam parameters for LGl1 and LGl2 -modes in Eq. (4) must be chosen
carefully to create a sufficiently deep and tightly confined radial poten-
tial in order to suppress wave-function dynamics in the radial direc-
tion. At the same time, this potential must go through a zero-intensity
minimum to trap atoms with minimal coherence loss due to photon

FIG. 1. Concept of TAI as a Sagnac rotation sensor. Counter-rotating trapping poten-
tials VþðhÞ and V�ðhÞ provide uninterrupted three-dimensional (3D) confinement
for the wave-packet components W6 ðhÞ, represented here as well-localized dots.
They are dragged by the respective tractor potentials, visualized with transparent
green bubbles, along counter-wound circular trajectories of radius R in the instru-
ment’s rest frame at tunable angular velocities 6xðtÞ. This occurs in the presence
of a background angular velocity X of the instrument’s rest frame against an inertial
frame, in which the rotation speeds are X6xðtÞ. The value of X is to be
measured.
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scattering. This can be achieved when both LG beams have similar
maximum intensity, with the radial intensity maxima separated by
more than one FWHM of the radial intensity distributions. For a
Gaussian beam waist ratio g ¼ w0;2=w0;1 and a power ratio
P2=P1 ¼ g2

ffiffiffiffiffiffiffiffiffi
l2=l1

p
, the radial intensity maxima are similar and sepa-

rated by Dr � w0;1 g
ffiffiffiffi
l1

p � ffiffiffiffi
l2

p� �
=
ffiffiffi
2

p
near the focus. Since the

FWHM of LGli is on the order of w0;i, for a given l1 and l2, the waist
ratio g should be chosen such that Dr� ð1þ gÞw0;1. The number of
desired azimuthal wells in the pinwheel lattice,m, has an implicit effect
on the best choice for g because m ¼ jl2 � l1j. We have found that
g � 1:3� 1:8 works for most l1 and l2< 50.

For the example of 87Rb, Fig. 2(a) demonstrates the superposition
of two 795nm laser beams with modes LG20 and LG28. In this case,
g ¼ 1:67 leads to an ideal pinwheel optical lattice with eight sites, as
shown in the optical potential in the transverse plane in Fig. 2(b). The
trapping potential is about 4.4MHz deep and perfectly sinusoidal along
the azimuthal direction, acting as a lattice with periodic boundary con-
ditions. Ultracold 87Rb atoms can be trapped in these potential minima
with minimal photon scattering.38 As described below, this potential is
sufficiently deep to prevent wave-function dispersion or tunneling
between the lattice sites. Along the radial direction, the potential is about
274MHz deep, and the radial trap frequency xr ¼ 29� 103 p=s,
which approximately equals five times the azimuthal trap frequency,
xr � 5xh. This suffices to freeze out radial dynamics.

Next, we discuss TAI confinement in the axial (z) direction.
Other experiments42,43 on ring-like traps have reported axial confine-
ment using lattices created by counter-propagating laser modes. In the
case of rotating pinwheel lattice, superposition of detuned counter-
propagating LG beams can lead to unwanted axial movement.

Therefore, we here suggest co-propagating LG beam pairs to form the
pinwheel lattice, and to use a separate, far off-resonant one-dimen-
sional optical lattice along the z-direction using counter-propagating
Gaussian beams of a sufficiently large beam waist. This allows robust,
all-optical axial confinement of the atoms on the pinwheel. For exam-
ple, a 300kHz-deep optical lattice can be created by counter-
propagating � 1W 532nm-wavelength Gaussian beams, focused to a
waist of 100lm. This will generate an axial stack of many pinwheel lat-
tices spaced by an axial lattice period of 266 nm. The structure of the
pinwheel lattices, as shown in Figs. 2(b)–2(d), remains largely constant
over an axial range of about 5lm from the focus, suggesting that sev-
eral tens of near-identical pinwheel lattices with tight 3D confinement
can be stacked.

With the radial and axial degrees of freedom being essentially fro-
zen, the pinwheel optical lattices can be approximated as 1D lattices
with periodic boundary conditions. Assuming that there is no linear
background acceleration, the Hamiltonian of the system in a suitable
inertial frame can be written as

H6 ðh; tÞ ¼ � �h2

2I
@2

@h2
þ V0 cos mðhþ /6 ðtÞÞ½ �: (5)

This expression is in the coordinate representation, and the labels “þ”
and “�” refer to the two atomic spin states (which are rotated in oppo-
site directions). The kinetic term contains the effective moment of
inertia I ¼ mRbR2 of a 87Rb atom (atomic mass mRb) rotating on a
pinwheel of radius R. The radius R is defined as the center of mass of
the tightly confined radial wave function. The cosine potential with m
sites moves with phases

/6 ðtÞ ¼
ðt
0
x6 ðt0Þdt0 ¼

ðt
0
X6xðt0Þ� �

dt0: (6)

The angular velocities at which the pinwheel lattices counter-rotate in
the instrument’s rest frame (lab frame), x6 , and the corresponding
phases, /6 , are controlled via the tunable angular-velocity control
function xðtÞ. The goal of the present TAI scheme is to measure the
constant rotation rateX of the instrument’s rest frame against the iner-
tial frame.

In the remainder of this section, we discuss the significance of the
fictitious forces associated with the rotation of the pinwheel lattices.
Regarding the centrifugal and Coriolis forces, we first note that in
most of our work the lattices are rotated at rates jx6 j� 102p=s,
which is much less than the radial trap frequency, xr � 104p=s. In
this regime, the relative radial displacement due to the centrifugal force
is DR=R ’ ðx6 =xrÞ2. For conditions as in Figs. 2–4, this translates
into a relative increase in R by only 12 ppm and in interferometric area
A by 24 ppm. Unless the interferometric phase difference approached
�2p� 105, there would be no significant contrast loss stemming from
the displacement of the radial trap minimum caused by the centrifugal
force. Furthermore, as the atoms tend to experience the same centrifu-
gal force, a lowest-order correction could be applied to account for the
(minuscule) increase in effective A. For conditions as in Figs. 2–4, the
correction would not affect sensitivity, and the conversion factor from
measured interferometric phase into angular velocity X would change
only after the fourth significant digit. Therefore, in the remainder of
this paper, we assume the lattice radius R to be constant and radial
wave-packet dynamics to be frozen out. The absence of radial motion

FIG. 2. An 8-site pinwheel 87Rb optical lattice is created from LG20 and LG28 laser
modes with k¼ 795 nm and respective Gaussian waists of w0;1 ¼ 5.78lm and
w0;2 ¼ 9.66lm, and powers of P1 ¼ 5.38mW and P2 ¼ 17.78mW. The beams
are assumed to be blue-detuned for an AC polarizability of �0.16 Hz/(V/m)2. (a)
Optical potential in the r–z plane. (b) Optical potential in the transverse plane at the
focus z¼ 0. (c) Potential along the radial direction for z¼ 0 and h¼ 0 and p=8. (d)
Potential along the azimuthal direction at R¼ 25.46lm and z¼ 0.
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also negates any effects from the Coriolis force. Additional details on
radial nonadiabatic effects are provided in the discussion in Sec. VII.

The effect of the Euler force is included in the Hamiltonian in
Eqs. (5), (17), and (20) via the time dependence of x6 . As seen in
Secs. IV and V, even the azimuthal dynamics tends to be adiabatic, i.e.,
the wave packets tend to be at rest in the frames that co-rotate with the
pinwheel lattices. Hence, even the Euler forces tend to be inconsequen-
tial over wide parameter ranges, including in Figs. 3 and 4. However,
nonadiabatic azimuthal dynamics driven by what can be described as
designer Euler forces is essential for the optimal-control method dis-
cussed in Sec. VI.

III. OPERATION

The interferometer is initialized by co-aligning the axes and azi-
muthal minima of the spin-dependent pinwheel lattices for the pair of
utilized spin states. The internal spin states could correspond, e.g., to
the jþi ¼ j5S1=2; F ¼ 1;mF ¼ 0i and j�i ¼ j5S1=2; F ¼ 2;mF ¼ 0i
states in the ground-state manifold of 87Rb. At t¼ 0, the wave function
is prepared in the local ground stateW0ðhÞ of one particular site in the
þ-lattice, that is, jWðh; t ¼ 0Þi ¼ W0ðhÞjþi. The shape and the width
of the eigenstate depend on the radius implicit in the effective moment
of inertia I, the number of lattice sites, m, and the V0 of the trapping
potential. For a givenm and a sufficiently deep potential (large V0), the
wave packet W0ðhÞ will be close to the eigenstate of a quantum har-
monic oscillator with frequency

xh ¼ m
ffiffiffiffiffiffiffiffiffiffi
V0=I

p
(7)

obtained by a Taylor expansion of the potential in Eq. (5) at the first
site. In the remainder of the paper, we will consider optical lattices
with a radius of R ¼ 25:46lm and m¼ 8 lattice sites, which corre-
sponds to a lattice period of 10lm in the azimuthal direction. Without
loss of generality, we choose lattice phases such that the initial wave
packet is centered at h0 ¼ p=8 at the first site.

Driving a momentum-transfer-free optical Raman transition at a
suitable Rabi frequencyX6 , we implement a p=2-pulse,

Ûp=2 ¼ 1ffiffiffi
2

p 1 i
i 1

� �
; (8)

between the two spin components. This acts as a beam-splitter and
creates an equal superposition of the two spin states. Thus, the wave
packets in the two spin-dependent potentials immediately after the
p=2-pulse are

Wþðh; 0Þ ¼ 1ffiffiffi
2

p W0ðhÞ; W�ðh; 0Þ ¼ iffiffiffi
2

p W0ðhÞ: (9)

The duration of the p=2-pulse typically is negligible compared to the
overall duration of the interferometer sequence. An experimentally
suitable choice for the duration of the p=2-pulse could be, for instance,
1.4ls, corresponding to a Rabi frequency ofX6 ¼ 6 2p� 178 kHz.

After splitting, the two wave packets W6 ðh; tÞ evolve indepen-
dently (i.e., without spin coupling) under the Hamiltonian in Eq. (5)
with counter-rotating time-dependent angular velocities X6xðtÞ.
For the time being, we assume that xðtÞ varies sufficiently slowly for
the wave-packet evolution to be adiabatic, i.e., the W6 ðh; tÞ remain in
the ground state of the local lattice site potential at all times. For the

azimuthal ramp of the pinwheel lattices, here, we first choose the
smoothly varying function

xðtÞ ¼

x0 sin 2 pt
2tr

� �
; 0 � t < tr ; ð10aÞ

x0; tr � t < tr þ tloop; ð10bÞ

x0 cos 2
pt0

2tr

� �
; T � tr � t � T ð10cÞ

8>>>>>><
>>>>>>:

with t0 ¼ t � tr � tloop and the total duration T ¼ 2tr þ tloop.
During the ramp-up time tr, the angular speeds of the lattice

potentials in the instrument frame are accelerated from 6xð0Þ ¼ 0
to 6xðtrÞ ¼ 6x0 and subsequently remain constant for a duration
of tloop. We first assume that tr is sufficiently large to result in adiabatic
dynamics. After the loop time tloop, the lattices are decelerated from
6x0 to xðTÞ ¼ 0 by running the ramp-up control backward. At
final time T, the two lattice potentials and, thus, the final wave packets
must coincide [both in the instrument frame (lab frame) and in the lat-
tice rest frames]. This is achieved by adjusting tloop such thatðT

0
xðtÞdt ¼ np (11)

for an interferometer with n “cycles.” The effective area of the TAI
then equals n� pR2.

FIG. 3. Adiabatic wave-function evolution in a rotating pinwheel optical lattice using
xðtÞ from Eq. (10) with V0 ¼ h� 4:4MHz; tr ¼ tloop ¼ 100ms; x0 ¼ 50p=s,
and X¼ 0. (a) Expectation value of the azimuthal displacement of the wave pack-
ets relative to the initial position h0 ¼ p=8 of the ground state of the selected
pinwheel-lattice well, Dh � hhi � h0, as measured in the instrument’s rest frame
(lab frame) for both counter-rotating states WþðtÞ and W�ðtÞ. The lattice has
R¼ 25.46lm and m¼ 8 lattice sites. (b) Momentum expectation value in the lab
frame, in units of effective moment of inertia I ¼ mRbR2 of a 87Rb atom rotating at
1p/s. The control function for the angular velocity of the pinwheel-lattices, xðtÞ, is
shown as the dotted black curve. (c) Azimuthal-angle expectation value of the wave
packet components in the lattices’ moving frames, i.e., the frames in which the latti-
ces are stationary. (d) Angular-momentum expectation value in the moving frame,
i.e., average angular momentum relative to 6 IxðtÞ. The shaded regions in panels
(b)–(d) indicate the standard deviations of the respective wave-function densities,
that is, the widths of the wave packets.
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Some exemplary dynamics for adiabatic evolution under Eq. (10)
are shown in Fig. 3. The interferometer has n¼ 10 cycles, as can be
seen in panel (a). The expectation value of the momentum, seen in
panel (b), follows exactly the movement of the potential, controlled by
xðtÞ. In the moving frames, defined here as the rest frames of the
rotating pinwheel lattices, the wave packets remain perfectly stationary
[see panels (c) and (d)].

The interferometric scheme is completed at final time T by an
inverse p=2-pulse, denoted Û

†

p=2 [see Eq. (8)], to recombine the two
spin-dependent components. For a non-zero constant background
rotation X in Eq. (6), the wave packetsWþðh;TÞ and W�ðh;TÞ accu-
mulate a differential phase DU that is reflected in the recombined state

Û
†

p=2jWðTÞi ¼ cþðh;TÞjþi þ c�ðh;TÞj�i (12)

with the populations

jc6 j2 ¼ 1
2
6

1
2
Re½ge�iDU�; (13)

and the overlap of the final-time wave-packet components

g ¼ hW�ðh;TÞjWþðh;TÞi: (14)

For a closed interferometric path and adiabatic time evolution,
W�ðh;TÞ ¼ Wþðh;TÞ ¼ W0ðhÞ, and thus, g¼ 1. In this case, Eq. (13)
simplifies to

jc�j2 ¼ 1
2
� cosDU

2
¼ sin2

DU
2

� �
; (15a)

jcþj2 ¼ 1� jc�j2 ¼ cos2
DU
2

� �
: (15b)

Up to an offset of an integer multiple of p, the value of DU can be
derived from a measurement of the population in at least one of the
two spin states.

IV. NUMERICAL SIMULATION
A. Quantum methods

The Crank–Nicolson (CN) method26,44,45 has commonly been
employed for simulations of wave packet dynamics in the position rep-
resentation, including cases with moving potentials.36 The method
requires a computationally expensive [OðN3

x Þ] matrix inversion. In
practice, for systems with 1D scalar potentials and non-PBC, this is
usually reduced to OðNxÞ due to the tridiagonal structure of the
Hamiltonian in position space. In the context of the azimuthal optical
lattice, periodic boundary conditions introduce additional corner
entries in the Hamiltonian matrix, necessitating a generalized Crout
reduction, as explained in the Appendix.

Here, we use CN simulations to study a TAI in a pinwheel optical
lattice as a function of X. The results of CN simulations performed in
the inertial frame according to the Hamiltonian in Eq. (3) are shown in
Fig. 4(a) as the points labeled “CN,” with the parameters listed in the
figure caption. A time-step Dt ¼ 50 ns and 3200 spatial grid points for
the full range of h 2 ½0; 2p� have been used. From the simulations, we
verify that for parameters as in Fig. 4, a h� 4.4MHz deep pinwheel lat-
tice effectively prevents any tunneling between the lattice sites.
Consequently, the wave-packet dynamics in the co-rotating frames of
reference is confined within one lattice site, or equivalently within a

h-range of only 2p=m in width. Exploiting the localization of the wave-
packet components in their respective lattices, in the present case, the
spatial grid can be reduced in width by a factor of m¼ 8 to the region
½0; p=4� of a single lattice site by applying the following transformation:

Û 6 ðtÞ ¼ exp
�iL̂z/6 ðtÞ

�h

� �

� exp �
ðt
0
x6 ðt0Þdt0 @

@h

 !
(16)

into the lattices’ rest frames, in which h is relative to the moving lattice
potentials. Applying the transformation in Eq. (16) on the Hamiltonian
in Eq. (5), one finds the Hamiltonian in the lattice rest frames

~H 6 ðtÞ ¼ � �h2

2I
@2

@h2
þ V0 cos mhð Þ � i�hx6 ðtÞ @

@h
: (17)

To simulate the dynamics under the Hamiltonian in Eq. (17), we
have found the simple split-propagator method46,47 to be effective. The
results of such simulations, which use 1024 spatial grid points to repre-
sent the wave packets in the range ½0; p=4� and a time resolution of
Dt ¼ 1 ls, are shown in Fig. 4 as the points labeled “SP.” An excellent
agreement with the inertial-frame results from the CN method is
observed. We have also verified the precision of the split-propagator
method by comparing it to a Chebychev propagation,48 which is exact
to machine precision, but slower by about a factor of four. It is noted
in Fig. 4 that the implementation with faster ramps, cf. panel (b), is still
adiabatic. The faster ramp allows a longer loop time, accommodating
n¼ 10 cycles instead of just 2 within the same interferometer time T,
and thus, results in a higher sensitivity.

B. Path integral method

The interferometric response closely follows a semiclassical
model based on path-integral propagators. The propagator phase of a
wave packet equals expðiSðx0ðtÞÞ=�hÞ, where Sðx0ðtÞÞ is the action of
the classical trajectory, x0ðtÞ, followed by the centroid of the wave
packet. Consequently, the phase difference DUS between our relevant
pair of wave packets in spin states j�i and jþi, arises from the differ-
ence of corresponding actions,

FIG. 4. Interferometric response of TAI in a pinwheel optical lattice to a constant
background rotation X for V0 ¼ h� 2:2MHz; tr ¼ 100ms, and T ¼ 300ms
(other parameters, see the text). (a) Population in j�i for a recombination after
n¼ 2 cycles, with x0 ¼ 10p=s. The Sagnac curve is analytically calculated from
Eq. (15a) with DU ¼ DUS, Eq. (19). The CN and SP points are obtained from sim-
ulations of the quantum dynamics with the Crank–Nicolson and split-propagator
methods, respectively (see the text for details). (b) Population in j�i after n¼ 10
cycles with x0 ¼ 50p=s, cf. the dynamics in Fig. 3.
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D/S ¼
1
�h

ð
Lðx�; _x�; tÞ � Lðxþ; _xþ; tÞð Þdt; (18)

where x6 are the paths followed by the centroids of the split wave-
function components, and Lðx6 ; _x 6 ; tÞ are the corresponding
Lagrangians. In TAI, the predetermined lattice trajectories serve as the
classical paths since the atomic wave functions remain tightly trapped
at the minima of the relatively slowly moving lattice potentials, and the
wave functions possess zero degrees of freedom. That is, the x6 are
simply given by the locations of the selected sites of the optical lattices
for jþi and j�i, and forces of constraint cause no significant altera-
tions. The Lagrangians for the states jþi and j�i differ in the presence
of a non-zero background angular velocity X due to the different lat-
tice angular speeds in the inertial frame. In the semi-classical path-inte-
gral picture, Eq. (18) leads to the well-known Sagnac phase

DUS ¼ 4mRbXA
�h

; A ¼ R2

2

ðT
0
xðt0Þdt0: (19)

The final recombined population in the state j�i on its respective
potential, Eq. (15a) with DU ¼ DUS, is shown in Fig. 4 as the solid
curve. Figure 4(a) shows the result for x0 ¼ 10p=s and two cycles (the
minimum number of cycles possible for tr ¼ 100ms and tloop > 0, for
a total of T ¼ 300ms). The parameters for Fig. 4(b) match those for
Fig. 3. The close agreement of the semi-classical results with the full
quantum simulations (CN and SP) in both Figs. 4(a) and 4(b) validates
the principles of TAI in the adiabatic limit, in which unwanted spin
couplings, wave-packet excitation, and tunneling on the spin-
dependent lattice potentials do not affect the interferometric phase of
the TAI.

C. Rotation sensitivity

Assuming that a phase resolution of 2p=100 can be experimen-
tally achieved,36 in Fig. 4(a), the rotation sensitivity can be inferred to
be about 5mrad/s. This can be improved by increasing the lattice
angular velocity for a given duration of the interferometric scheme.
Figure 4(b) shows the response for n¼ 10 cycles, achieved by increas-
ing x0 to 50p=s. In Fig. 4(b), the sensitivity is improved five-fold to
roughly 1mrad/s.

The sensitivity of the TAI gyroscope scales as Nloop � pR2, where
Nloop is the total number of 2p rotations completed by each lattice, and
R is the radius of the pinwheel lattice. The interferometer sensitivity
can be enhanced further by increasing both R and the lattice rotation
rate x6 to achieve a larger Nloop, while ensuring that the effects of
nonadiabatic azimuthal excitations remain manageable. For further
insight along these lines, in the following, we introduce yet another
simulation approach.

Nonadiabatic dynamics along the azimuthal direction is best
explained in the co-rotating lattice frames given by Eq. (16). The first
two terms of the Hamiltonian ~H 6 ðtÞ in Eq. (17) describe stationary
optical lattices, in which we initialize the wave functions in the respec-
tive ground states. As the lattices are accelerated, the last term, which is
proportional to x6 ðtÞL̂z , may cause nonadiabatic transitions into
excited vibrational states within the initially populated lattice wells. In
shallow lattices, modified tunneling behavior may occur (Bloch oscilla-
tions andWannier–Stark localization). In the following, we develop an
estimate as to what rotation sensitivities may be possible under these
constraints.

The departure from perfect adiabaticity can be quantitatively esti-
mated in the momentum picture by exploiting the spatial periodicity of
the Hamiltonian ~H 6 ðtÞ. Following the well-known Bloch formalism,
any eigenstate of ~H 6 ðtÞ can be characterized by quasi-angular
momentum ‘ and band index n as jwn

‘ i ¼ ei‘hjun‘ i where un‘ ðhþ 2pÞ
¼ un‘ ðhÞ. Then, the effective Hamiltonian for jun‘ i is given by

H‘;6 ðtÞ ¼ ðLz þ �h‘Þ2
2I

þ V0 cos mhð Þ þ x6 ðLz þ �h‘Þ; (20)

where H‘;6 ðtÞu‘ðtÞ ¼ En
‘ ðtÞu‘ðtÞ. Scaling the Hamiltonian by and

effective recoil energy ER ¼ �h2m2=2I gives a dimensionless eigenvalue
equation in terms ofH ¼ mh,

� d2

dH2 �
2i‘
m

d
dH

þ ‘

m

� �2

þ V0

ER
cosðHÞ þ 2Ix6

m�h
�i

d
dH

þ ‘

m

� �" #

� un‘ ðx6 ;HÞ ¼ En
‘

ER
un‘ ðx6 ;HÞ: (21)

Equation (21) offers an estimate of the relative magnitudes of dif-
ferent terms in the Hamiltonian in the co-rotating frames. First, we
consider tunneling effects for a ground-state wave function u00ð0; hÞ
trapped in a static lattice (i.e., ‘ ¼ x6 ¼ 0). In this simple case,
tunneling-induced wave-function delocalization is suppressed when
V0 	 ER. When a lattice of such potential depth is rotated at a con-
stant angular velocity x6 , the final term on the left-hand side in Eq.
(21) mixes the ground state of the stationary lattice with excited states
from higher bands. This mixing can be minimized if the lattice depth
2V0 is much larger than the scale of the lattice-rotation-induced per-
turbationm�hx6 .

For the pinwheel lattice under consideration, the effective recoil
energy ER is �h� 250Hz and the scale of the lattice-rotation-induced
perturbation at x6 ’ 100p=s is �h� 16 kHz. In an experimental
implementation, the pinwheel lattice can be operated at a radius of up
to R ¼ 250 lm by using LG20 and LG28 modes with waist sizes of 57.8
and 96.6lm, respectively. Such a lattice with a lattice depth of
4.4MHz can support a rotation rate of x6 � 100p/s with minimal
nonadiabatic excitations and lattice distortions from non-inertial
forces. Thus, Nloop and R each can be improved by a factor of 10,
enhancing the sensitivity to�1 lrad/s within 1 s measurement time.

The signal-to-noise ratio can be enhanced by loading a larger
number of atoms into the lattices. This can be achieved, for instance, by
creating pinwheel lattices with more sites (i.e., larger m) and stacking
several pinwheel lattices axially on a linear array of z-lattice sites. The
axial stacking is limited to a range jzj 
 zR, where the locations of the
radial minima stay similar enough to avoid excessive inhomogeneous
broadening of the TAI phase D/. For example, in Fig. 2(a), the position
of the radial minima changes by less than 0.01% over z ¼ 6 1.5lm.
Therefore, for a stack of ten pinwheel lattices separated by the lattice
period 266nm, one can expect the average TAI fringe contrast to
remain large for D/ up to several 100� 2p. In experimental realiza-
tions, LG beams with larger beam waists and Rayleigh ranges would
allow a higher degree of axial stacking to improve signal-to-noise.

V. NONADIABATIC EFFECTS IN LATTICE SPIN-UP
AND SPIN-DOWN

In order to further optimize the gyroscope sensitivity and to
increase the dynamic range in rotation sensing, the time tr in Eq. (10)
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during which the lattices are accelerated should be reduced.
Additionally, the ability of the interferometer to operate with shallower
lattices, which will accommodate laser power constraints and mini-
mize signal loss due to photon scattering, has to be explored. When
entering the nonadiabatic regime, the split wave function in each spin-
dependent potential deviates from the ground stateW0ðhÞ in the lattice
rest frames. We have studied the nonadiabatic effects numerically by
simulating the time evolution under the Hamiltonian in Eq. (17). In
Fig. 5, we show the fidelity under the smoothly varying ramp function

xðtÞ in Eq. (10a), which drives the ground state W0ðh; t ¼ 0Þ in the
initially selected optical lattice well into a state Wðh; trÞ. The fidelity is
given by the magnitude-square of the overlap between Wðh; trÞ and
the desired target state, Wtgtðh; trÞ, which is the ground state of the
potential rotating at the terminal constant speed 6x0 ¼ 50p=s. The
point marked by the red square in the top-right corner corresponds to
the fully adiabatic time evolution shown in Fig. 3.

We observe a transition from adiabatic to nonadiabatic evolution
for a separation time between 1ms and 100ls, depending on the
depth of the potential. It is, thus, confirmed that the lattice acceleration
conditions in Fig. 3 are deep in the adiabatic regime, allowing several
orders of magnitude increase in acceleration before nonadiabatic
effects actually become substantial. To gain a better understanding of
the separation failure mode for small tr and V0 and of the effects of
nonadiabaticity on the overall interferometric scheme, we show in
Figs. 6(a)–6(e) the dynamics for tr ¼ 150ls and V0 ¼ 0:2MHz,
marked with the red diamond in Fig. 5. Looking first at the initial sepa-
ration phase, see left insets in Figs. 6(c)–6(e), we can see that the wave
packet is not readily accelerated to terminal speed by the accelerating
optical lattice. The lab-frame momentum, shown in panel (c), shows
very little initial acceleration of the wave packet. Unlike in the adiabatic
case in Fig. 3(b), where hpiþ readily reaches x0 ¼ 50p=s at t¼ tr, in
Fig. 6(c), it does not even come close. In the moving frame (lattice rest
frame), shown in Figs. 6(d) and 6(e), both position and momentum
are far from zero, which also contrasts against the adiabatic case in
Figs. 3(c) and 3(d). In fact, initially the signs of momentum and posi-
tion in the moving frame are opposite to that of the acceleration: as the
lattice is accelerated to the left (counter-clockwise), the wave packet in
the moving frame is displaced to the right (clockwise).

FIG. 5. Fidelity of the initial splitting operation for varying separation time tr and V0 of
the trapping potential. The separation fidelity is the overlap of the state jWðtr Þi
resulting from the evolution under Eq. (10a) with the ground state of the moving
potential at tr.

FIG. 6. Dynamics of the TAI interferometer for a nonadiabatic separation time tr ¼ 150 ls and a shallow potential with V0 ¼ 0:2 MHz, as marked by the red diamond in Fig. 5.
All other parameters are as in Fig. 3. Panels (b)–(f) show the results under the analytic drive function xðtÞ given by Eq. (10), and panels (g)–(k) show the results for an opti-
mized field xoptðtÞ (see the text for details). Panels (a) and (f) show the interferometric response of the un-optimized and the optimized drive functions to a constant background
rotation X. For comparison, the semiclassical Sagnac curve from Fig. 4(b) is included in panel (a).
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To explain the observations in the previous paragraph, we first
note that during the short separation time of 150ls, the actual dis-
placement is very small: note the scale factor of 10�3 on the y-axis in
Fig. 6(d). In the subsequent 199.85ms, when the optical lattices loop
at constant counter-rotating speeds 6x0, the atoms eventually
respond to the force that the trapping potential imparts on them. As
a consequence, in the lattice rest frames, the wave packets oscillate
around zero, as seen in the panels (d) and (e), and around momen-
tum 6x0 in the lab frame, as seen in panel (c). Visual inspection of
Fig. 6(c) reveals that the oscillation period is close to that of the har-
monic xH in Eq. (7), which is 660ls for V0 ¼ 0:2MHz. However,
the atoms oscillate in the anharmonic regions of the cosine potential
in Eq. (5), for this value of V0. As a result, we also find a breathing of
the oscillation, i.e., the oscillation amplitude diminishes while the
width of the wave packet increases [see the first and last 1.5ms in
panels (c) and (e)]. The breathing is absent when the atoms remain
confined to the near-harmonic sections of the cosine function, e.g.,
for potentials with larger values of V0. The physical picture that sum-
marizes and underlies these observations is that for tr ! 0 and V0

sufficiently large, the lattices instantaneously speed up to x0 under-
neath the atoms. If the corresponding kinetic energy in the lattice
frame is less than 2V0, the atoms subsequently undergo a sloshing
oscillation in the lattice frame. At longer times, the oscillation exhibits
collapse and quantum revival phenomena caused by the anharmonic-
ity of the potential.

In Figs. 6(a)–6(e), the ramp-down of the pinwheel lattice from x0

to a position at rest, in the lab frame, behaves fundamentally the same
as the initial ramp-up: the wave packet does not slow down with the
rapidly decelerating potential. Instead, the location of the oscillating
wave packet at the time instant when the deceleration hits determines
the wave packet’s state within the lattice well after the lattice slowdown
is complete. The final state may range from less excited to more highly
excited than before the deceleration. In Figs. 6(d) and 6(e), the latter is
the case.

Overall, the lack of fidelity seen in Fig. 5, and the resulting oscilla-
tory dynamics have a detrimental effect on the contrast of the full TAI
interferometric scheme. First, as shown in Fig. 6(b), the interferometer
fails to close perfectly. Second, prior to the final recombination p=2
pulse, the wave packets no longer match the ground state W0ðhÞ, nei-
ther in position nor in momentum and nor in width, as seen in panels
(d) and (e). Thus, the magnitude of the overlap g in Eq. (14) typically
is much less than 1, and the contrast of the resulting populations jc6 j2
in Eq. (13) is correspondingly diminished. This result is shown in
Fig. 6(a). For the given parameters, the achieved contrast is only 24%.
This falls well short of the contrast of the path-integral Sagnac curve,
shown as the black dotted line, which matches exactly Fig. 4(b).
Because for small tr, the overall process approximates the physics of
two impulsive kicks applied to a wave-packet in a well, there also is an
erratic dependence of the AI contrast on fine details. The phase of the
wave-packet sloshing motion at the time instant of the second kick
largely determines visibility. The simplified two-pulse picture becomes
more accurate at shorter tr; the picture essentially applies in the left
third of Fig. 5. An additional factor that plays a role is that at small V0

and short tr, the effective two-pulse wave-packet drive may excite the
wave packet partially into the continuum, causing further contrast loss.
In Sec. VI, we will attempt to correct these unwanted behaviors using
methods of optimal control.

VI. OPTIMAL CONTROL

Having observed the detrimental effect of a separation time tr
that is too short, we consider the use of optimal control to improve
the fidelity in Fig. 5 for moderate values of tr. Specifically, we seek to
find an xðtÞ that is an alternative to the analytical shape in Eq. (10a)
such that W6 ðh; tÞ reaches W6 ;tgtðh; t ¼ trÞ, that is, the ground state
in the lattice rest frames. The optimized xðtÞ must maintain the
boundary conditions xð0Þ ¼ 0 and xðtrÞ ¼ x0. To this end, we
parameterize

xoptðtÞ ¼ xðtÞ þ SðtÞdxðtÞ; (22)

where xðtÞ is the original shape given by Eq. (10a), dxðtÞ is a correc-
tion to be optimized, and SðtÞ 2 ½0; 1� is a fixed shape with Sð0Þ
¼ SðtrÞ ¼ 0 to enforce the boundary conditions. Here, we use a shape
that smoothly switches on and off with a Blackman shape during the
first and last 20% of the time window. The initialization for dxðtÞ is
dxðtÞ ¼ 0.

An optimized correction dxðtÞ can be obtained using any of the
standard gradient-based quantum control methods, including
GRAPE49 or Krotov’s method.50 Here, we have used the Krotov.jl
package51 within the QuantumControl Julia framework.52 Within 300
iterations, using a square-modulus functional,53 we can bring the sepa-
ration error from 0.648, see Fig. 5, to 1:26� 10�5. The resulting opti-
mized xoptðtÞ is shown in the left inset of Fig. 6(h), with the full
resulting dynamics for the entire interferometric scheme in panels (g)–
(k). The optimized control function for the ramp-down is the time
inverse of the ramp-up one [see the right inset of panel (h)].

We observe a “throw and catch” behavior. The field ramps up
rapidly to a relatively high (but still achievable) speed of 252p/s, but
then slows down and temporarily switches direction, before returning
to the target speed of 50p/s. The lab frame momentum does not follow
this rapid motion, but smoothly accelerates from 0 to 50p/s, as can be
seen in the inset of Fig. 6(h), and very much mimics the adiabatic
dynamics in Fig. 3(b). Likewise, the lattice-frame position, seen in
panel (i), initially lags behind the accelerating lattice potential, but then
smoothly catches up to the equilibrium position within the lattice
frame. The subsequent dynamics while the optical lattices loop at con-
stant speed x0 are near-identical with the adiabatic case in Fig. 3: both
position and momentum are zero in the moving frame [see panels (i)
and (k)] and follow the position and momentum of the trapping
potential in the lab frame [see panels (g) and (h)]. The ramp-down
inverts the dynamics during the ramp-up, leaving the wave function in
a state that is very close to the ground state of the lattice potential at
rest. This results in near-ideal interferometric response following
Eq. (15), as shown in Fig. 6(f). This implies that the interferometric
path in panel (g) is now perfectly closed, in contrast to the open path
in panel (b).

In principle, a throw and catch optimal control solution can be
found for even shorter tr. However, the shorter tr, the larger the ampli-
tude that the control function xoptðtÞ will need to reach during the
ramp-up and ramp-down phases. Hence, the maximum experimen-
tally achievable angular control velocity will determine how far one
may push to the left in Fig. 5.

A more general approach to accelerate the ramp-up and ramp-
down phases is to exploit the dependency of the boundary between
adiabatic and nonadiabatic behavior on V0 (see Fig. 5). For instance,
starting from the point marked by the red diamond in Fig. 5, one may
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temporarily increase the depth of the potential, move up along the
dashed line in Fig. 5, in combination with tuning xðtÞ. However, an
eigenstate of a shallower lattice well will not be an eigenstate of a
deeper one, resulting in a breathing motion of the wave packet after
the compression. To counter this, one would have to add another layer
of throw and catch to suppress the breathing or introduce additional
control over the shape of the potential.

The control functions we have obtained here are already quite
simple and can be readily implemented. As an alternative or an aug-
mentation to the numerically optimized controls, one may in the
future explore analytic control schemes under the umbrella of “short-
cuts to adiabaticity.”54

VII. FURTHER DISCUSSION

In this section, we discuss selected topics that are expected to
become relevant in the experimental work. We first comment on non-
adiabatic dynamics along the radial degree of freedom, caused mostly
by the centrifugal force. For the parameters under consideration, the
effect of a change in radius due to the centrifugal force is very small, as
mentioned in Sec. II. Moreover, the pinwheel lattice is accelerated
gradually and the variation in radial potential due to the centrifugal
force is adiabatic. The Hamiltonian along the radial direction can be
approximated as

Ĥ radðtÞ ¼ p̂r
2=ð2mÞ þmx2

r x̂
2=2�mx2

6 ðtÞRx̂; (23)

where x̂ ¼ r̂ � R with R ¼ 25:46 lm (see the caption of Fig. 2). A
simulation of nonadiabatic radial excitation using the Hamiltonian Eq.
(23) in a fixed number-state basis showed a probability loss of
<4� 10�7 from the radial ground state for the drive function in
Fig. 3, while the radial ground-state population loss in a time-
dependent adiabatic number-state basis was insignificant at our
numerical precision of �10�9. Therefore, nonadiabatic couplings due
to the centrifugal force could be safely neglected in our numerical dem-
onstration. The same simulation also shows that the lattice in Fig. 2
provides radial adiabaticity for x6 up to at least 1000� 2p=s, which
will help in increasing sensitivity.

Another topic that warrants a comment is cross-talk between the
spin-dependent lattices. In previous work,38 we have explored the
design of spin-dependent lattices of rubidium using laser beams near
the D1 line. Counter-rotating pinwheel lattices with opposite circular
polarizations can be used to leverage the principles of Ref. 38 in the
Sagnac interferometer proposed in the present paper. During the spin-
splitting and recombination operations, the atoms are trapped in over-
lapping 3D potential wells of opposite helicity, with confinement in
the xy-plane provided by stationary, overlapping LG-beam potential
wells, as described in Sec. II, and confinement along z provided by
overlapping circularly polarized lattices. Two sets of Raman pulses
coherently split and recombine wave-packet components into the
states into/from jF ¼ 2;mF ¼ 6 2i. After splitting, the rþ and r�

lattice wells are separated along z by half a z-lattice period. Once sepa-
rated, all atoms are returned into the mF¼ 0 state. The pinwheels then
accelerate, hold steady at fixed angular velocities x6 , and slow down
as described. The duration of this sensing phase ideally exceeds the
splitting/recombination sequences by orders of magnitude.
Recombination takes place in the reverse order. The readout is per-
formed via spin-dependent fluorescence measurement or another suit-
able technique. To implement this scheme, a temporary magnetic field

on the order of 1 Gauss may be briefly pulsed on during the split-
ting and recombination phases. The magnetic field is off during the
sensing phase. The polarity of the magnetic-field pulses is opposite
during splitting and recombination for maximal symmetry and
Zeeman-phase cancelation. In this scheme, unwanted cross-talk in
photon scattering between the spin-dependent lattices and collisions
between counter-rotating atoms are addressed, in part, by having the
lattices counter-rotate in z-planes that are suitably offset from each
other, a design component that in Ref. 38 is referred to as “side-
kick.”

Another point of technical interest is the prevention of lattice-
mode imperfections. In order to prevent these, mode-cleanup cavi-
ties55 may be employed to ensure a high purity of the constituting LG
and other lattice-beam modes. Also, lattice phase noise can be reduced
using low-noise lasers56 and a cavity feedback.57 Since all LG modes
for the pinwheel lattices can be sourced from the same laser, LG-beam
intensity noise ideally is common-mode, with no effect on the relative
Sagnac phase.

VIII. CONCLUSION

In summary, we have presented the design of a rotation sensor
based on the principles of tractor atom interferometry.36,38 An experi-
mental setup can be realized using readily available instrumentation.
The parameters for the pinwheel lattice, which is at the heart of the
envisioned devices, can be obtained following the considerations dis-
cussed in Sec. II. In the adiabatic limit, quantum-dynamics simulations
of the sensor’s single- and multi-loop operation agree well with semi-
classical path-integral predictions, in which one simply enters the
known tractor trajectories into the applicable Lagrangian. Our proof-
of-principle simulations allow rotation sensitives of about 1 mrad/s.
We have provided a discussion and concrete examples that illustrate
the utility of quantum control to realize fast beam splitters and ramps
to prepare coherently split wave-function components that counter-
rotate at high rotation speeds, allowing higher sensitivity. Estimates
that extrapolate pinwheel area and rotation speed to reasonable limits
predict sensitivities approaching 1lrad/s, at a 1-s measurement time.
Future investigations may further explore the benefits of quantum
entanglement58–61 for increasing the sensitivity-bandwidth product,
reducing sensor size, etc. Moreover, optimal control theory techniques,
as utilized here to reduce the splitting time and to alleviate the influ-
ence of nonadiabatic effects and decoherence caused by photon scat-
tering, may present a viable pathway to improve the performance of
matter-wave interferometers, including future experiments at the
International Space Station.62,63
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APPENDIX: GENERALIZED CROUT REDUCTION

The time evolution of the wave function under Schr€odinger’s
equation is given by

@wðx; tÞ
@t

¼ i�h
2m

@2wðx; tÞ
@x2

� iVðxÞ
�h

wðx; tÞ: (A1)

Let us consider this in a 1D system confined to ½�xl; xlÞ with the
initial conditions wðx; 0Þ ¼ w0ðxÞ; wðxl; 0Þ ¼ wð�xl; 0Þ ¼ 0 and
periodic boundary condition so that wðx þ 2xlÞ ¼ wðxÞ. By discre-
tizing the derivatives, the right-hand-side is approximated up to
OðDx2Þ as

i�h
2mDx2

wðkÞ
jþ1 þ wðkÞ

j�1 � 2wðkÞ
j

	 

� iVj

�h
wðkÞ
j �

XN
m¼0

iHj;mw
ðkÞ
m

�h
; (A2)

where H is the position representation of the Hamiltonian. The
Crank–Nicolson method discretizes the time domain by taking the
average of forward and backward differences to approximate
the time derivative ð@w=@tÞ and relates wkþ1 � wðt ¼ ðkþ 1ÞdtÞ to
wk as

1� iHDt
2�h

� �
wkþ1 ¼ 1þ iHDt

2�h

� �
wk: (A3)

The generalized Crout reduction algorithm for the PBC
Hamiltonian is

1. Initialize wkþ1; l; u; z; g; n as zero arrays of size N.
2. With k ¼ ði�hDt=2mDx2Þ

(a) Set l0 ¼ 1þ kþ ðiV0Dt=2�hÞ; g0 ¼ �ðk=2Þ; n0 ¼ �ðk=2l0Þ
(b) For i in f1;…;N � 2g:

ui ¼ � k
2li

li ¼ 1þ kþ iViDt
2�h

þ k
2
ui

(c) For i in f1;…;N � 2g:

ni ¼
kiþ1

2iþ1
Qi
j¼0

lj

; gi ¼
kiþ1

2iþ1
Qi�1

j¼0
lj

(d) Set the last entries of l and u

uN�1 ¼ � k
2lN�2

þ nN�2;

lN�1 ¼ 1þ kþ iVN�1Dt
2�h

�
XN�3

j¼0

gjnj � gN�2 �
k
2

� �
uN�1:

3. Set z0 ¼ 1� k� iV0Dt
2�h

	 

wk
0 þ k

2l0
ðwk

N�1 þ wk
1Þ

(a) For i in f1;…;N � 2g:

zi ¼ 1� k� iViDt
2�h

� �
wk
i þ

k
2li

wk
iþ1 þ wk

i�1 þ zi�1

	 


(b) Set last entry:

zN�1 ¼ 1� k� iVN�1Dt
2�h

� �
wk
0

þ k
2lN�1

wk
N�1 þ wk

1 þ zN�2 �
XN�2

j¼0

zjgj

0
@

1
A

4. Back-substitute to obtain wkþ1:

(a) Set wkþ1
N�1 ¼ zN�1

(b) For i in fN � 2;…; 1g:

wkþ1
i ¼ zi þ k

2li
wkþ1
iþ1 � wkþ1

N�1ni:

REFERENCES
1M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M. Tino,
Phys. Rev. Lett. 113, 023005 (2014).
2D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura,
W. P. Schleich, W. Ertmer, and E. M. Rasel, Phys. Rev. Lett. 112, 203002
(2014).

3T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A.
Sugarbaker, J. M. Hogan, and M. A. Kasevich, Nature 528, 530 (2015).

4M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder, J. Khoury,
and H. M€uller, Nat. Phys. 13, 938 (2017).

5G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, V.
Brukner, and G. M. Tino, Nat. Commun. 8, 15529 (2017).

6J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, Science 315, 74
(2007).

AVS Quantum Science ARTICLE pubs.aip.org/aip/aqs

AVS Quantum Sci. 6, 014407 (2024); doi: 10.1116/5.0175802 6, 014407-10

Published under an exclusive license by AIP Publishing

 07 June 2024 17:06:13

https://doi.org/10.1103/PhysRevLett.113.023005
https://doi.org/10.1103/PhysRevLett.112.203002
https://doi.org/10.1038/nature16155
https://doi.org/10.1038/nphys4189
https://doi.org/10.1038/ncomms15529
https://doi.org/10.1126/science.1135459
pubs.aip.org/aip/aqs


7R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. M€uller, Science 360, 191 (2018).
8V. Xu, M. Jaffe, C. D. Panda, S. L. Kristensen, L. W. Clark, and H. M€uller,
Science 366, 745 (2019).

9L. Morel, Z. Yao, P. Clad�e, and S. Guellati-Kh�elifa, Nature 588, 61 (2020).
10K. Bongs, M. Holynski, J. Vovrosh, P. Bouyer, G. Condon, E. Rasel, C.
Schubert, W. P. Schleich, and A. Roura, Nat. Rev. Phys. 1, 731 (2019).

11B. Culshaw, Meas. Sci. Technol. 17, R1 (2005).
12A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Rev. Mod. Phys. 81, 1051
(2009).

13F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Bord�e, Phys. Rev. Lett. 67,
177 (1991).

14T. L. Gustavson, P. Bouyer, and M. A. Kasevich, Phys. Rev. Lett. 78, 2046
(1997).

15C. Schubert, S. Abend, M. Gersemann, M. Gebbe, D. Schlippert, P. Berg, and E.
M. Rasel, Sci. Rep. 11, 16121 (2021).

16B. Barrett, R. Geiger, I. Dutta, M. Meunier, B. Canuel, A. Gauguet, P. Bouyer,
and A. Landragin, C. R. Phys. 15, 875 (2014).

17S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A.
Kasevich, Phys. Rev. Lett. 111, 083001 (2013).

18G. W. Hoth, B. Pelle, S. Riedl, J. Kitching, and E. A. Donley, Appl. Phys. Lett.
109, 071113 (2016).

19Y.-J. Chen, A. Hansen, M. Shuker, R. Boudot, J. Kitching, and E. Donley, Opt.
Express 28, 34516 (2020).

20S. Wu, E. Su, and M. Prentiss, Phys. Rev. Lett. 99, 173201 (2007).
21E. R. Moan, R. A. Horne, T. Arpornthip, Z. Luo, A. J. Fallon, S. J. Berl, and C.
A. Sackett, Phys. Rev. Lett. 124, 120403 (2020).

22M. Beydler, E. R. Moan, Z. Luo, Z. Chu, and C. A. Sackett, “Guided-wave
Sagnac atom interferometer with large area and multiple orbits,”
arXiv:2308.11481 (2023).

23K. Krzyzanowska, J. Ferreras, C. Ryu, E. C. Samson, and M. Boshier, “Matter
wave analog of a fiber-optic gyroscope,” arXiv:2201.12461 (2022).

24W. C. Campbell and P. Hamilton, J. Phys. B 50, 064002 (2017).
25L. Qi, Z. Hu, T. Valenzuela, Y. Zhang, Y. Zhai, W. Quan, N. Waltham, and J.
Fang, Appl. Phys. Lett 110, 153502 (2017).

26P. Muruganandam and S. K. Adhikari, J. Phys. B 36, 2501 (2003).
27R. Stevenson, M. R. Hush, T. Bishop, I. Lesanovsky, and T. Fernholz, Phys. Rev.
Lett. 115, 163001 (2015).

28F. Gentile, J. Johnson, K. Poulios, and T. Fernholz, “Ring-shaped atom-trap lat-
tices using multipole dressing fields,” arXiv:1909.01186 (2019).

29C. Ryu and M. G. Boshier, New J. Phys. 17, 092002 (2015).
30T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J.
Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, New J. Phys. 18,
035003 (2016).

31P. Navez, S. Pandey, H. Mas, K. Poulios, T. Fernholz, and W. von Klitzing, New
J. Phys. 18, 075014 (2016).

32Z. Y. Wang, Z. Zhang, and Q. Lin, Eur. Phys. J. D 53, 127 (2009).
33J. A. Stickney and A. A. Zozulya, Phys. Rev. A 66, 053601 (2002).
34J. A. Stickney and A. A. Zozulya, Phys. Rev. A 68, 013611 (2003).
35G.-B. Jo, J.-H. Choi, C. A. Christensen, T. A. Pasquini, Y.-R. Lee, W. Ketterle,
and D. E. Pritchard, Phys. Rev. Lett. 98, 180401 (2007).

36A. Duspayev and G. Raithel, Phys. Rev. A 104, 013307 (2021).

37A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera, and
D. Meschede, Proc. Natl. Acad. Sci. U. S. A. 109, 9770 (2012).

38G. Raithel, A. Duspayev, B. Dash, S. C. Carrasco, M. H. Goerz, V. Vuleti�c, and
V. S. Malinovsky, Quantum Sci. Technol. 8, 014001 (2022).

39G. Premawardhana, J. Kunjummen, S. Subhankar, and J. M. Taylor,
“Investigating the feasibility of a trapped atom interferometer with movable
traps,” arXiv:2308.12246 (2023).

40T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, Phys.
Rev. Lett. 78, 4713 (1997).

41S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J.
Wright, J. M. Girkin, P. €Ohberg, and A. S. Arnold, Opt. Express 15, 8619
(2007).

42E. Courtade, O. Houde, J.-F. Cl�ement, P. Verkerk, and D. Hennequin, Phys.
Rev. A 74, 031403 (2006).

43L. Amico, A. Osterloh, and F. Cataliotti, Phys. Rev. Lett. 95, 063201 (2005).
44R. E. Sapiro, R. Zhang, and G. Raithel, Phys. Rev. A 79, 043630 (2009).
45Z. Pagel, W. Zhong, R. H. Parker, C. T. Olund, N. Y. Yao, and H. M€uller, Phys.
Rev. A 102, 053312 (2020).

46M. D. Feit, J. A. Fleck, Jr., and A. Steiger, J. Comput. Phys 47, 412 (1982).
47R. Kosloff, J. Phys. Chem. 92, 2087 (1988).
48H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984).
49N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbr€uggen, and S. J. Glaser,
J. Magn. Res. 172, 296 (2005).

50D. J. Tannor, V. Kazakov, and V. Orlov, “Control of photochemical branch-
ing: Novel procedures for finding optimal pulses and global upper bounds,”
in Time-Dependent Quantum Molecular Dynamics (Springer, 1992), pp.
347–360.

51M. H. Goerz et al. (2023). “JuliaQuantumControl/Krotov.jl,” Github. https://
github.com/JuliaQuantumControl/Krotov.jl; software package for implementa-
tion of Krotov's method of optimal control.

52M. H. Goerz et al. (2023). “JuliaQuantumControl/QuantumControl.jl,” Github.
https://github.com/JuliaQuantumControl/QuantumControl.jl; a Julia frame-
work for quantum dynamics and control.

53J. P. Palao and R. Kosloff, Phys. Rev. A 68, 062308 (2003).
54D. Gu�ery-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot,
and J. G. Muga, Rev. Mod. Phys. 91, 045001 (2019).

55M. Granata, C. Buy, R. Ward, and M. Barsuglia, Phys. Rev. Lett. 105, 231102
(2010).

56Y. Cheng, K. Zhang, L.-L. Chen, W.-J. Xu, Q. Luo, M.-K. Zhou, and Z.-K. Hu,
AIP Adv. 7, 095211 (2017).

57H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A. S. Zibrov, M.
Endres, M. Greiner, V. Vuleti�c et al., Phys. Rev. Lett. 121, 123603 (2018).

58L. Salvi, N. Poli, V. Vuleti�c, and G. M. Tino, Phys. Rev. Lett. 120, 033601
(2018).

59F. Anders, A. Idel, P. Feldmann, D. Bondarenko, S. Loriani, K. Lange, J. Peise,
M. Gersemann, B. Meyer-Hoppe et al., Phys. Rev. Lett. 127, 140402 (2021).

60S. C. Carrasco, M. H. Goerz, Z. Li, S. Colombo, V. Vuleti�c, and V. S.
Malinovsky, Phys. Rev. Appl. 17, 064050 (2022).

61G. P. Greve, C. Luo, B. Wu, and J. K. Thompson, Nature 610, 472 (2022).
62K. Frye et al., EPJ Quantum Technol. 8(1), 1 (2021).
63I. Alonso et al., EPJ Quantum Technol. 9, 30 (2022).

AVS Quantum Science ARTICLE pubs.aip.org/aip/aqs

AVS Quantum Sci. 6, 014407 (2024); doi: 10.1116/5.0175802 6, 014407-11

Published under an exclusive license by AIP Publishing

 07 June 2024 17:06:13

https://doi.org/10.1126/science.aap7706
https://doi.org/10.1126/science.aay6428
https://doi.org/10.1038/s41586-020-2964-7
https://doi.org/10.1038/s42254-019-0117-4
https://doi.org/10.1088/0957-0233/17/1/R01
https://doi.org/10.1103/RevModPhys.81.1051
https://doi.org/10.1103/PhysRevLett.67.177
https://doi.org/10.1103/PhysRevLett.78.2046
https://doi.org/10.1038/s41598-021-95334-7
https://doi.org/10.1016/j.crhy.2014.10.009
https://doi.org/10.1103/PhysRevLett.111.083001
https://doi.org/10.1063/1.4961527
https://doi.org/10.1364/OE.399988
https://doi.org/10.1364/OE.399988
https://doi.org/10.1103/PhysRevLett.99.173201
https://doi.org/10.1103/PhysRevLett.124.120403
http://arxiv.org/abs/2308.11481
http://arxiv.org/abs/2201.12461
https://doi.org/10.1088/1361-6455/aa5a8f
https://doi.org/10.1063/1.4980066
https://doi.org/10.1088/0953-4075/36/12/310
https://doi.org/10.1103/PhysRevLett.115.163001
https://doi.org/10.1103/PhysRevLett.115.163001
http://arxiv.org/abs/1909.01186
https://doi.org/10.1088/1367-2630/17/9/092002
https://doi.org/10.1088/1367-2630/18/3/035003
https://doi.org/10.1088/1367-2630/18/7/075014
https://doi.org/10.1088/1367-2630/18/7/075014
https://doi.org/10.1140/epjd/e2009-00116-7
https://doi.org/10.1103/PhysRevA.66.053601
https://doi.org/10.1103/PhysRevA.68.013611
https://doi.org/10.1103/PhysRevLett.98.180401
https://doi.org/10.1103/PhysRevA.104.013307
https://doi.org/10.1073/pnas.1204285109
https://doi.org/10.1088/2058-9565/ac9429
http://arxiv.org/abs/2308.12246
https://doi.org/10.1103/PhysRevLett.78.4713
https://doi.org/10.1103/PhysRevLett.78.4713
https://doi.org/10.1364/OE.15.008619
https://doi.org/10.1103/PhysRevA.74.031403
https://doi.org/10.1103/PhysRevA.74.031403
https://doi.org/10.1103/PhysRevLett.95.063201
https://doi.org/10.1103/PhysRevA.79.043630
https://doi.org/10.1103/PhysRevA.102.053312
https://doi.org/10.1103/PhysRevA.102.053312
https://doi.org/10.1016/0021-9991(82)90091-2
https://doi.org/10.1021/j100319a003
https://doi.org/10.1063/1.448136
https://doi.org/10.1016/j.jmr.2004.11.004
https://github.com/JuliaQuantumControl/Krotov.jl
https://github.com/JuliaQuantumControl/Krotov.jl
https://github.com/JuliaQuantumControl/QuantumControl.jl
https://doi.org/10.1103/PhysRevA.68.062308
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1103/PhysRevLett.105.231102
https://doi.org/10.1063/1.5001963
https://doi.org/10.1103/PhysRevLett.121.123603
https://doi.org/10.1103/PhysRevLett.120.033601
https://doi.org/10.1103/PhysRevLett.127.140402
https://doi.org/10.1103/PhysRevApplied.17.064050
https://doi.org/10.1038/s41586-022-05197-9
https://doi.org/10.1140/epjqt/s40507-020-00090-8
https://doi.org/10.1140/epjqt/s40507-022-00147-w
pubs.aip.org/aip/aqs

