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Why Julia?

Flexibility

Performance

Expressiveness
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Multiple Dispatch

Julia’s secret sauce: “multiple dispatch”

Function name has table of “methods” (signatures)

Pick the method that most narrowly matches signature

Adding methods dynamically recompiles anything calling the function, if necessary

See video: “The Unreasonable Effectiveness of Multiple Dispatch”
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Multiple Dispatch
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Multiple Dispatch

Define high-level interfaces
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Control Problem and Trajectories
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Dynamical Generator
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Generator Interface
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Generator Interface

https://michaelgoerz.net 6 / 30

Modernizing the Quantum Control Stack with QuantumControl.jl



UNCLASSIFIED

Multiple Dispatch

Define low-level problem-specific data structures
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Rotating Tractor Interferometer
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— Dash, Goerz et al. AVS Quantum Sci. 6, 014407 (2023)
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Rotating Tractor Interferometer
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Rotating Tractor Interferometer – Optimization
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Rotating Tractor Interferometer – Optimization
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Project-Specific Data Structures
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QuantumControl.jl is not a modeling framework!
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Flexibility

Tie in to modern techniques: automatic differentiation
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Automatic differentiation (AD)
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Just do the propagation (evaluate the functional)

Let the computer calculate the derivative ∂J/∂εnl

— Leung et al. Phys. Rev. A 95, 042318 (2017)

— Abdelhafez et al., Phys. Rev. A 99, 052327 (2019)

— Schäfer, et al. Mach. Learn.: Sci. Technol. 1, 035009 (2020)

— Abdelhafez et al. Phys. Rev. A 101, 022321 (2020)
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Automatic differentiation (AD)
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Semi-Automatic Differentiation
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Quantum 6, 871 (2022) — arXiv:2205.15044
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Semi-Automatic Differentiation
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∇J({εnl}) =
∂

∂εnl
JT ({|Ψk(T )〉}) + . . .

= 2Re
∑

k

∂JT
∂ |Ψk(T )〉︸ ︷︷ ︸
≡〈χk (T )|

∂ |Ψk(T )〉
∂εnl
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Aside: Wirtinger derivatives — derivatives w.r.t. complex numbers

JT ({zk}) = JT ({Re[zk ], Im[zk ]}); JT ∈ R, zk ∈ C

∂JT ({zk})
∂εnl

=
∑

k

(
∂JT

∂Re[zk ]

∂Re[zk ]

∂εnl
+

∂JT
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∂Im[zk ]

∂εnl

)
; εnl ∈ R
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− i
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+
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Gradient of Time Evolution Operator
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— Goodwin, Kuprov, J. Chem. Phys. 143, 084113 (2015)

https://github.com/JuliaQuantumControl/QuantumGradientGenerators.jl
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Generalized GRAPE scheme
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1○ forward-prop and storage with guess
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∑

k ∇τ (k)

— Goerz et al. Quantum 6, 871 (2022)
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Semi-Automatic Differentiation

|χk(T )〉 =
∂JT

∂ 〈Ψk(T )|

is the only thing evaluated inside AD framework

→ JT = JT (Û)

→ JT = JT ({τk}) with τk =
〈
Ψk(T )

∣∣Ψtgt
k

〉
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GRAPE and Krotov Numerical Scheme Comparison
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(a) GRAPE

1○ forward-prop and storage with guess

2○ backward-prop of extended state/gradient
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— Goerz et al. Quantum 6, 871 (2022)
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Optimizing for a Maximally Entangling Gate
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k̂1,2: Single qubit gates; c1,2,3: Weyl chamber coordinates

Zhang et al. Phys. Rev. A 67, 042313 (2003)

Gate concurrence of two-qubit gate Û

1 c1, c2, c3 ∝ eigvals
(

ÛŨ
)

; Ũ = (σ̂y⊗σ̂y ) Û (σ̂y⊗σ̂y )

2 C (Û) = max |sin(c1,2,3 ± c3,1,2)|

Childs et al. Phys. Rev. A 68, 052311 (2003)
Not analytic!
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Benchmarks

0

200

400

600

ru
nt

im
e/

gr
ad

ev
al

(s
)

Fu
ll-

AD
(O

DE
)

Full-AD (Cheby)Semi-AD (Cheby)

9 100 225
0

10

20

Full-AD (ODE)

Full-AD (Cheby)Semi-AD (Cheby)

0 400 800
0

10

20

0 50 100 150 200
Hilbert space size

0

2000

4000

6000

8000

pe
ak

RA
M

(M
B)

Full-A
D (Cheby)

Full-AD (ODE)
Semi-AD (Cheby)

9 100 225
50

100

150

0 200 400 600 800
gate duration (ns), number of time steps (10)

Full-AD (Cheby)

Full-AD (ODE)

Semi-AD (Cheby)

0 400 800
50

100

150

Semi-AD (Cheby) (PE)
Full-AD (Cheby) (PE)
Full-AD (ODE) (PE)

Semi-AD (Cheby) (C)
Full-AD (Cheby) (C)
Full-AD (ODE) (C)

Semi-AD (Cheby) (SM)
Full-AD (Cheby) (SM)
Full-AD (ODE) (SM) Direct (Cheby) (SM)

https://michaelgoerz.net 21 / 30

Modernizing the Quantum Control Stack with QuantumControl.jl



UNCLASSIFIED

Nuclear Spin Gyroscope
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— Adapted from Fig 2 of Jarmola et. al. Sci. Adv. 7, eabl3840 (2021)
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Optimization of Signal Spectrum
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Optimization of Signal Spectrum
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Optimization of Signal Spectrum
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Performance
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Benchmark for Chebychev Propagator – Large Hilbert Space
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Benchmark for Chebychev Propagator – Large Hilbert Space (sparse)
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Benchmark for Chebychev Propagator – Small Hilbert Space
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Outlook
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Parameterized Pulses

ε(t) = ε({un}, t)

experimental constraints
no PWC error
but: local traps, controllability issues

https://github.com/JuliaQuantumControl/ParameterizedQuantumControl.jl

(CRAB, GOAT, GROUP, . . . )

Semi-Classical Optimization

Reinforcement Learning

. . .

Doria et al. PRL 106, 190501 (2011)

structure. In particular the DMRG describes ground state
static properties of one-dimensional systems by means of a
matrix product state (MPS) [16]. The main characteristic of
a MPS is that the resources needed to describe a given
system depend only polynomially on the system size N,
due to the introduction of an ancillary dimension m that
determines the precision of the approximation. Since an
exact description requires exponentially increasing resour-
ces with the number of components N, the tensor network
approach results in an exponential gain in resources. Given
a system Hamiltonian, the best possible approximated
description of the system ground state—within the MPS
at fixed m—is determined by means of an efficient energy
minimization. With some slight modification, discretizing
the time T ¼ nsteps!t and performing a Trotter expansion,
the algorithm can be adapted to follow a state time evolu-
tion, the so-called tDMRG [13]. The tDMRG is a very
powerful numerical method for efficiently numerically
simulating the time evolution of one-dimensional many-
body quantum systems. The class of states and of time
evolutions that can be efficiently described with a small
error are determined by the presence of entanglement
between the different system components [12]. Here, we
will use the tDMRG for the simulation of cold atoms in
time-dependent optical lattices, which we feed into the
chopped random basis (CRAB) optimization algorithm as
described below.

CRAB method.—The general scenario of an optimal
control problem can be stated as follows: given a system
described by a Hamiltonian H depending on some control
parameters cjðtÞ with j ¼ 1; . . . ; NC, the goal is to find the
cj’s time dependence (pulse shape) that extremizes a given
figure of merit F , for instance, the final system energy,
state fidelity, or entanglement. We then start with an initial
pulse guess c0j ðtÞ and look for the best correction that has a
simple expression in a given functional basis. As an ex-
plicative example, here we focus on the case where the
correction is of the form cjðtÞ ¼ c0j ðtÞfjðtÞ, and the func-

tions fjðtÞ can be simply expressed in a truncated Fourier
space, depending on the expansion coefficients ~aj ¼ akj
(k ¼ 1; . . . ;Mj). In particular, in the following, we start
from an initial ansatz, e.g., an exponential or linear ramp,
and we introduce a correction of the form

fðtÞ ¼ 1

N

!
1þ

X

k

Ak sinð!ktÞ þ Bk cosð!ktÞ
"
: (1)

Here, k ¼ 1; . . . ;M, !k ¼ 2"kð1þ rkÞ=T are ‘‘rando-
mized’’ Fourier harmonics, T is the total time evolution,
rk 2 ½0:1& are random numbers with a flat distribution, and
N is a normalization constant to keep the initial and final
control pulse values fixed. The optimization problem is
then reformulated as the extremization of a multivariable
function F ðfAkg; fBkg; f!kÞg, which can be numerically
approached with a suitable method, e.g., steepest descent
or conjugate gradient [17]. When using CRAB together

with tDMRG, computing the gradient of F is extremely
resource consuming, if not impossible. Thus we resort to a
direct search method like the Nelder-Mead or Simplex
methods [17]. They are based on the construction of a
polytope defined by some initial set of points in the space
of parameters that ‘‘rolls down the hill’’ following prede-
fined rules until reaching a (possibly local) minimum (see
Fig. 1). Because of the fact that direct search methods are
based on many independent evaluations of the function to
be minimized, they can be efficiently implemented to-
gether with tDMRG simulations (and possibly performed
in parallel). We stress that the functional dependency of the
correction presented here [Eq. (1)] is one possible ap-
proach: different strategies might be explored. Indeed,
making a given choice confines the search of the optimal
driving field in a subspace of the whole space of functions
and the results might depend on this choice. On the other
hand, this approach simplifies the optimization problem
that would be otherwise computationally unfeasible when
tDMRG simulations are needed. As shown below, the
described choice allows us to perform a successful
optimization.
Optical-lattice system.—Very recently, the experimental

and theoretical analysis of the dynamics of cold atoms in
optical lattices has experienced a fast development, after
the experimental demonstration of coherent manipulation
of ultracold atoms in the seminal work of Ref. [18], where
a Bose-Einstein condensate is first loaded into a single
trap, and then a periodic lattice potential is slowly ramped
up, inducing a quantum phase transition to aMott insulator.
This is the enabling step for a wide range of experiments,
from transport or spectroscopy to quantum information
processing [19]. In most of these applications, it is essential
to achieve the lowest possible number of defects in the final
state, that is, to reach exactly a final state with fixed number
of atoms per site, e.g., unit filling. Up to now, this has been
pursued by limiting the process speed—the superfluid-
Mott insulator transition has been performed in about a
hundred milliseconds, with a density of defects typically of
the order of 10% [20].
Cold atoms in an optical lattice can be described by the

Bose-Hubbard model defined by the Hamiltonian [19,21]

FIG. 1 (color online). (a) An initial guess pulse c0ðtÞ is used as
a starting point. (b) The function F ð ~aÞ for the case ~a ¼ fa1; a2g
and the initial polytope (white triangle) are defined and moved
‘‘downhill’’ [darker gray (red) triangles] until convergence is
reached. (c) The final point is recast as the optimal pulse cðtÞ.
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Gradients of parametrized pulses




∂Û
∂u1
|Ψk〉
...

∂Û
∂uN
|Ψk〉

Û |Ψk〉




= exp



−iT

∫ T

0




Ĥ(t) 0 . . . 0 Ĥ(1)(t)

0 Ĥ(t) . . . 0 Ĥ(2)(t)
...

. . .
...

0 0 . . . Ĥ(t) Ĥ(N)(t)

0 0 . . . 0 Ĥ(t)




dt







0
...
0
|Ψk〉




with Ĥ(n)(t) = ∂Ĥ(t)
∂un

— “GOAT”: Machnes et al. Phys. Rev. Lett. 120, 150401 (2018)
https://github.com/JuliaQuantumControl/QuantumGradientGenerators.jl
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Conclusion

Julia: multiple dispatch for flexibility and performance

QuantumControl framework: general structure of optimal control

Rotating Tractor Atom Interferometer: project-specific data structures

Semi-automatic differentiation

Nuclear Spin Gyroscope: optimize spectrum of response

Performance: Julia matches or outperforms Fortran

Thank You!
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Krotov’s Method

J(ε(t)) = JT ({|Ψk(T )〉}) + λa

∫ T

0

(∆ε(t))2

S(t)
dt

⇓

∆ε(t) =
S(t)

λa

〈
χ
(0)
k (t)

∣∣∣ ∂H
∂ε(t)

∣∣∣Ψ(1)
k (t)

〉
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Krotov Numerical Scheme
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2○ forward-prop with updated control

φk Ψk(t1)

ε
(1)
l,1
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(k)
l,1

Ψk(t). . .

ε
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(1)
l,NT−1
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Ψk(T )

ε
(1)
l,NT
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(k)
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1○ backward-prop and storage with guess

χk(0) χk(t1)

ε
(0)
l,1

χk(t). . .

ε
(0)
l,2
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ε
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χk(T )

ε
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∂εl (0)

∂Ĥk
∂εl (t1)

∂Ĥk
∂εl (t2)
. . . ∂Ĥk

∂εl (tNT−1)

— Goerz et al. Quantum 6, 871 (2022)
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GRAPE and Krotov Numerical Scheme Comparison
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(a) GRAPE

1○ forward-prop and storage with guess

2○ backward-prop of extended state/gradient

φk Ψk(t1)

ε
(i−1)
l1

Ψk(t). . .

ε
(i−1)
l2
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. . .

(b) Krotov’s method

2○ forward-prop with updated control

1○ backward-prop and storage with guess
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concurrent update sequential update

— Goerz et al. Quantum 6, 871 (2022)
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Open Quantum Systems

Lindblad equation:

d

dt
ρ̂(t) = −i

[
Ĥ, ρ̂(t)

]
+ LD(ρ̂(t))

= −i
[
Ĥ, ρ̂(t)

]
+
∑

k

(
Âk ρ̂Â†k −

1

2
Â†k Âk ρ̂−

1

2
ρ̂Â†k Âk

)

Vectorization rule:
vec
(

Âρ̂B̂
)

=
(
B̂T ⊗ Â

)
~ρ

Matrix representation of Lindbladian:

L̂ = −i(1⊗ Ĥ)+ i(ĤT ⊗1)+
∑

k

[
(Â†k)T ⊗ Âk −

1

2

(
1⊗ Â†k Âk

)
− 1

2

(
(Â†k Âk)T ⊗ 1

)]

— Goerz et. al. arXiv:1312.0111v2 (2021), Appendix B
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Gradient-free optimization

structure. In particular the DMRG describes ground state
static properties of one-dimensional systems by means of a
matrix product state (MPS) [16]. The main characteristic of
a MPS is that the resources needed to describe a given
system depend only polynomially on the system size N,
due to the introduction of an ancillary dimension m that
determines the precision of the approximation. Since an
exact description requires exponentially increasing resour-
ces with the number of components N, the tensor network
approach results in an exponential gain in resources. Given
a system Hamiltonian, the best possible approximated
description of the system ground state—within the MPS
at fixed m—is determined by means of an efficient energy
minimization. With some slight modification, discretizing
the time T ¼ nsteps!t and performing a Trotter expansion,
the algorithm can be adapted to follow a state time evolu-
tion, the so-called tDMRG [13]. The tDMRG is a very
powerful numerical method for efficiently numerically
simulating the time evolution of one-dimensional many-
body quantum systems. The class of states and of time
evolutions that can be efficiently described with a small
error are determined by the presence of entanglement
between the different system components [12]. Here, we
will use the tDMRG for the simulation of cold atoms in
time-dependent optical lattices, which we feed into the
chopped random basis (CRAB) optimization algorithm as
described below.

CRAB method.—The general scenario of an optimal
control problem can be stated as follows: given a system
described by a Hamiltonian H depending on some control
parameters cjðtÞ with j ¼ 1; . . . ; NC, the goal is to find the
cj’s time dependence (pulse shape) that extremizes a given
figure of merit F , for instance, the final system energy,
state fidelity, or entanglement. We then start with an initial
pulse guess c0j ðtÞ and look for the best correction that has a
simple expression in a given functional basis. As an ex-
plicative example, here we focus on the case where the
correction is of the form cjðtÞ ¼ c0j ðtÞfjðtÞ, and the func-

tions fjðtÞ can be simply expressed in a truncated Fourier
space, depending on the expansion coefficients ~aj ¼ akj
(k ¼ 1; . . . ;Mj). In particular, in the following, we start
from an initial ansatz, e.g., an exponential or linear ramp,
and we introduce a correction of the form

fðtÞ ¼ 1

N

!
1þ

X

k

Ak sinð!ktÞ þ Bk cosð!ktÞ
"
: (1)

Here, k ¼ 1; . . . ;M, !k ¼ 2"kð1þ rkÞ=T are ‘‘rando-
mized’’ Fourier harmonics, T is the total time evolution,
rk 2 ½0:1& are random numbers with a flat distribution, and
N is a normalization constant to keep the initial and final
control pulse values fixed. The optimization problem is
then reformulated as the extremization of a multivariable
function F ðfAkg; fBkg; f!kÞg, which can be numerically
approached with a suitable method, e.g., steepest descent
or conjugate gradient [17]. When using CRAB together

with tDMRG, computing the gradient of F is extremely
resource consuming, if not impossible. Thus we resort to a
direct search method like the Nelder-Mead or Simplex
methods [17]. They are based on the construction of a
polytope defined by some initial set of points in the space
of parameters that ‘‘rolls down the hill’’ following prede-
fined rules until reaching a (possibly local) minimum (see
Fig. 1). Because of the fact that direct search methods are
based on many independent evaluations of the function to
be minimized, they can be efficiently implemented to-
gether with tDMRG simulations (and possibly performed
in parallel). We stress that the functional dependency of the
correction presented here [Eq. (1)] is one possible ap-
proach: different strategies might be explored. Indeed,
making a given choice confines the search of the optimal
driving field in a subspace of the whole space of functions
and the results might depend on this choice. On the other
hand, this approach simplifies the optimization problem
that would be otherwise computationally unfeasible when
tDMRG simulations are needed. As shown below, the
described choice allows us to perform a successful
optimization.
Optical-lattice system.—Very recently, the experimental

and theoretical analysis of the dynamics of cold atoms in
optical lattices has experienced a fast development, after
the experimental demonstration of coherent manipulation
of ultracold atoms in the seminal work of Ref. [18], where
a Bose-Einstein condensate is first loaded into a single
trap, and then a periodic lattice potential is slowly ramped
up, inducing a quantum phase transition to aMott insulator.
This is the enabling step for a wide range of experiments,
from transport or spectroscopy to quantum information
processing [19]. In most of these applications, it is essential
to achieve the lowest possible number of defects in the final
state, that is, to reach exactly a final state with fixed number
of atoms per site, e.g., unit filling. Up to now, this has been
pursued by limiting the process speed—the superfluid-
Mott insulator transition has been performed in about a
hundred milliseconds, with a density of defects typically of
the order of 10% [20].
Cold atoms in an optical lattice can be described by the

Bose-Hubbard model defined by the Hamiltonian [19,21]

FIG. 1 (color online). (a) An initial guess pulse c0ðtÞ is used as
a starting point. (b) The function F ð ~aÞ for the case ~a ¼ fa1; a2g
and the initial polytope (white triangle) are defined and moved
‘‘downhill’’ [darker gray (red) triangles] until convergence is
reached. (c) The final point is recast as the optimal pulse cðtÞ.
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e.g. Nelder-Mead (simplex), genetic algorithms. . .
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