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The Basic ldea

GRAPE: Gradient Ascent Pulse Engineering

do

original value

Fig. 1. Schematic representation of a control amplitude w(t), .
consisting of N steps of duration Ar = T/N. During each step j, the uy (j)
control amplitude u(j) is constant. The vertical arrows represent
gradients 5%, /du;(/), indicating how each amplitude () should be
modified in the next iteration to improve the performance function @. at time index j: go in direction of gradient

Pulse Update
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Working in Liouville Space

Density Matrix

W) — p= WXV

Liouville-von Neumann Equation
m
<Ho + Z Uk(t)Hk> 7,0}

k=1

p(t) = —i[H, p(D)]_ = —i

Time Propagation
m
U; = exp {iAt <H0 +>° uk(j)Hk> }

k=1
p(T)=Un...U1p(0) U} ... U},
= [W(T)XW(T)| with W(T)=U,...U¥(0)
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Definition of Fidelity

Fidelity in Liouville space is defined in analogy to fidelity in Hilbert space: as the
overlap between the propagated state with the optimal state.

®o = (Clp(T)) = tr (CTp(T))

C=0W(0)XW(0)| OF  p(T) = UW(0)XW(0) UT
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Definition of Fidelity

Fidelity in Liouville space is defined in analogy to fidelity in Hilbert space: as the
overlap between the propagated state with the optimal state.

®o = (Clp(T)) = tr (CTp(T))

C=0[Vw(O)Xw(0)|OT  p(T)=UW(0)X¥(0)| U

tr (CTp(T)) =3 (n ‘o‘ w(0)) (W(0) ‘ofu‘ w(0)) (W(0) ‘UT‘ n)

= <\u(0) ‘UT Z] n> <n‘ o ‘ \u(0)> <\U(O) ’ofu‘ \u(0)>
= <‘u(0) ‘UTO) lll(0)> <\|J(0) ‘o*u] \Ii(0)>

- ‘<\u(o) ]ofu‘ w(o)>‘2

Michael Goerz Introduction to the GRAPE Algorithm



Fidelity through Backward- and Forward-Propagation

A trace is invariant under cyclic permutation of its factors!

Fidelity at T

0 = (Clp(T)) = (ClUn .. Lip()Uf ... U} )
= (U}, U\ CUN .. Upn|U;... tap(O)U] ... U] )

Propagated States — Fidelity at t;

UJ];_1 U,J{,CUN ...Ujy1 bw. propagated optimal state

o= Uooo Ulp(O)Uf . UjJr fw. propagated initial state

2
Il

o = (Clp(T)) = (Nlpj)

Note: all propagations with guess pulse!
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Calculation of Pulse Update

Pulse Update

(el 0P
0 We need to calculate 0

u(j) dui ()

uk(j) — uk(j) + €

Two steps:

m For a variation du(j), calculate 6U;

. 9%
m Use §U; to calculate Bl

Calculations are not completely trivial.

Solution:
0o i
= — (\j|iAt[Hy, pj]—
8Uk(j) <J|’ [ kva] >
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Grape Algorithm

Pulse Update

9Py 9Py . 1R |
Uk(j) — uk(J) Bu (_I) Buk(j) = — <>\J|1At[Hk,pj],>

Guess initial controls u(j)
Update pulse according to gradient:

Forward propagation of p(0): calculate and store all p; = U;. .. Ulp(O)UI . UJ.Jr
for j € [1,N]

Backward propagation of C: calculate and store all \; = UJ.T+1 .. U,J{,CUN Ui
for j € [1, N]

Evaluate 8%8') and update the m x N control amplitudes uy(j)

Done if fidelity converges
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Variations

Non-Hermitian Operators

— 8 8‘1)1 — x| X\ _ YN s Y
1 =R[%ol; 5 = (linselHe, o5 ) = (MlintHy, o)
odb, i
P = |¢0|2; m = *2%{<)‘j|’At[Hk7Pj> <p7vv|c>}

®3 = R (UF|U(T)) = §R<UJ.T+1 L ULURY; .. U1> = R(P;|X;)
9bs3
Aug(j)
&4 = [(UE|U(T)I? = (Pi1X;) (X|P;)
00,
Auk(j)

— R (PlitH. )

—2R {(P;|iAtHX;) (X;1P;)}

Also works with Lindbladt-Operators. Additional energy constraints are possible.
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Comparison with OCT

Fig. 1. Schematic representation of a control amplitude w(t),
consisting of N steps of duration Ar = T/N. During each step j, the
control amplitude u(j) is constant. The vertical arrows represent
gradients 5%, /duy(/), indicating how each amplitude () should be
modified in the next iteration to improve the performance function @,.

Wigt

Au(j) ~ (Vou () [l Vh (1))

GRAPE also needs forward- and backward-propagation, but only with old pulse.

Propagated states also need to be stored.

m Pulse update at point j in the current iteration does not depend on other
updated pulse values (non-sequential update)

m What about the choice of €?

Michael Goerz

All updates in GRAPE can in principle be calculated in parallel.

Convergence tends to be pretty lousy (so I'm told)
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Thank You!
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