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Abstract

In this paper, we introduce optimal control algorithm for the design of pulse sequences in NMR spectroscopy. This methodology
is used for designing pulse sequences that maximize the coherence transfer between coupled spins in a given specified time, minimize
the relaxation effects in a given coherence transfer step or minimize the time required to produce a given unitary propagator, as
desired. The application of these pulse engineering methods to design pulse sequences that are robust to experimentally important
parameter variations, such as chemical shift dispersion or radiofrequency (rf) variations due to imperfections such as rf inhomoge-
neity is also explained.
! 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In applications of NMR spectroscopy, it is desirable
to have optimized pulse sequences tailored to specific
applications. For example, in multi-dimensional NMR
experiments one is often interested in pulse sequences
which maximize the coherence transfer between coupled
spins in a given specified time, minimize the relaxation
effects in a given coherence transfer step or minimize
the time required to produce a given unitary propagator.
From an engineering perspective all these problems are
challenges in optimal control [1,2] where one is inter-
ested in tailoring the excitation to a dynamical system
to maximize some performance criterion. In this paper,

we present gradient ascent algorithms for optimizing
pulse sequences (control laws) for steering the dynamics
of coupled nuclear spins. Similar methods and their vari-
ants have been applied in laser spectroscopy [3–7]. In
NMR, this approach has been used to design band-se-
lective pulses [8–10], robust broadband excitation, and
inversion pulses [11–13]. However, previous studies in
NMR were limited to uncoupled spin systems whose
dynamics is governed by the Bloch equations. It is
important to note that the optimal control principles
are standard text book material in applied optimal con-
trol [1,2]. The focus of this paper is the application of
these methods for some important problems in NMR.
Previously, gradient-based optimizations of NMR pulse
sequences for coupled spin systems have almost exclu-
sively relied on gradients computed by the difference
method. One important exception are analytical deriva-
tives introduced by Levante et al. [14] for pulse sequence
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The Basic Idea

Acronym

GRAPE: Gradient Ascent Pulse Engineering

optimizations, where the performance can be expressed
in terms of the eigenvalues and eigenfunctions of the to-
tal propagator.

The paper is organized as follows. In Section 2, we
present the basic theoretical ideas and numerical optimi-
zation algorithms directly applicable to the problem of
pulse design. To illustrate the method, we present three
simple but non-trivial applications to coupled spin sys-
tems both in the presence and in the absence of relaxa-
tion. In Section 3.1, we look at the problem of finding
maximum coherence transfer achievable in a given time
and the design of pulse sequences that achieve this trans-
fer. In Section 3.2, the algorithm is used to find relaxa-
tion optimized pulse sequences that perform desired
coherence transfer operations with minimum losses. In
Section 3.3, we design pulse sequences that produce a
desired unitary propagator in a network of coupled
spins in minimal time. In all examples, we compare the
results obtained by the numerical optimization algo-
rithm with optimal solutions obtained by analytical
arguments based on geometric optimal control theory.
In the conclusion section, we discuss the convergence
properties of the proposed algorithm and possible
extensions.

2. Theory

2.1. Transfer between Hermitian operators in the absence
of relaxation

To fix ideas, we first consider the problem of pulse de-
sign for polarization or coherence transfer in the absence
of relaxation. The state of the spin system is character-
ized by the density operator q (t), and its equation of
motion is the Liouville–von Neuman equation [15]

_qðtÞ ¼ $i H0 þ
Xm

k¼1

ukðtÞHk

 !

; qðtÞ

" #

; ð1Þ

where H0 is the free evolution Hamiltonian, Hk are the
radiofrequency (rf) Hamiltonians corresponding to the
available control fields and u (t) = (u1 (t), u2 (t), . . .,um (t))
represents the vector of amplitudes that can be changed
and which is referred to as control vector. The problem
is to find the optimal amplitudes uk (t) of the rf fields that
steer a given initial density operator q (0) = q0 in a spec-
ified time T to a density operator q (T) with maximum
overlap to some desired target operator C. For Hermi-
tian operators q0 and C, this overlap may be measured
by the standard inner product

hCjqðT Þi ¼ tr CyqðT Þ
! "

: ð2Þ

(For the more general case of non-Hermitian operators,
see Section 2.2). Hence, the performance index U0 of the
transfer process can be defined as

U0 ¼ hCjqðT Þi: ð3Þ

In the following, we will assume for simplicity that
the chosen transfer time T is discretized in N equal steps
of duration Dt = T/N and during each step, the control
amplitudes uk are constant, i.e., during the jth step the
amplitude uk (t) of the kth control Hamiltonian is given
by uk (j) (cf. Fig. 1). The time-evolution of the spin sys-
tem during a time step j is given by the propagator

Uj ¼ exp $iDt H0 þ
Xm

k¼1

ukðjÞHk

 !( )

: ð4Þ

The final density operator at time t = T is

qðT Þ ¼ UN & & &U 1q0U
y
1 & & &U

y
N ; ð5Þ

and the performance function U0 (Eq. (3)) to be maxi-
mized can be expressed as

U0 ¼ hCjUN & & &U 1q0U
y
1 & & &U

y
N i: ð6Þ

Using the definition of the inner product (cf. Eq. (2))
and the fact that the trace of a product is invariant un-
der cyclic permutations of the factors, this can be rewrit-
ten as

U0 ¼ hU y
jþ1 & & &U

y
NCUN & & &Ujþ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kj

j Uj & & &U 1q0U
y
1 & & &U

y
j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

qj

i;

ð7Þ

where qj is the density operator q (t) at time t = jDt and
kj is the backward propagated target operator C at the
same time t = jDt. Let us see how the performance U0

changes when we perturb the control amplitude uk (j)
at time step j to uk (j) + duk (j). From Eq. (4), the change
in Uj to first order in duk (j) is given by

dUj ¼ $iDtdukðjÞHkUj ð8Þ

with

HkDt ¼
Z Dt

0

UjðsÞHkUjð$sÞds ð9Þ

Fig. 1. Schematic representation of a control amplitude uk (t),
consisting of N steps of duration Dt = T/N. During each step j, the
control amplitude uk (j) is constant. The vertical arrows represent
gradients dU0=dukðjÞ, indicating how each amplitude uk (j) should be
modified in the next iteration to improve the performance function U0.
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uk (j)

Φ0

original value

at time index j : go in direction of gradient

Pulse Update

uk (j) −→ uk (j) + ε
∂Φ0

∂uk (j)
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Working in Liouville Space

Density Matrix

|Ψ〉 −→ ρ = |Ψ〉〈Ψ|

Liouville-von Neumann Equation

ρ̇(t) = −i [H, ρ(t)]− = −i

" 
H0 +

mX
k=1

uk (t)Hk

!
, ρ

#
−

Time Propagation

Uj = exp

(
−i∆t

 
H0 +

mX
k=1

uk (j)Hk

!)

ρ(T ) = UN . . .U1 ρ(0) U†1 . . .U
†
N

= |Ψ(T )〉〈Ψ(T )| with Ψ(T ) = Un . . .U1Ψ(0)
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Definition of Fidelity

Fidelity in Liouville space is defined in analogy to fidelity in Hilbert space: as the
overlap between the propagated state with the optimal state.

Fidelity

Φ0 = 〈C |ρ(T )〉 ≡ tr
“
C†ρ(T )

”
C = O |Ψ(0)〉〈Ψ(0)|O† ρ(T ) = U |Ψ(0)〉〈Ψ(0)|U†

Equivalence to “normal” fidelity

tr
“
C†ρ(T )

”
=
X

n

D
n
˛̨̨
O
˛̨̨

Ψ(0)
ED

Ψ(0)
˛̨̨
O†U

˛̨̨
Ψ(0)

ED
Ψ(0)

˛̨̨
U†
˛̨̨
n
E

=
D

Ψ(0)
˛̨̨
U†
X˛̨̨

n
ED

n
˛̨̨
O
˛̨̨

Ψ(0)
ED

Ψ(0)
˛̨̨
O†U

˛̨̨
Ψ(0)

E
=
D

Ψ(0)
˛̨̨
U†O

˛̨̨
Ψ(0)

ED
Ψ(0)

˛̨̨
O†U

˛̨̨
Ψ(0)

E
=
˛̨̨D

Ψ(0)
˛̨̨
O†U

˛̨̨
Ψ(0)

E˛̨̨2

Michael Goerz Introduction to the GRAPE Algorithm



Definition of Fidelity

Fidelity in Liouville space is defined in analogy to fidelity in Hilbert space: as the
overlap between the propagated state with the optimal state.

Fidelity

Φ0 = 〈C |ρ(T )〉 ≡ tr
“
C†ρ(T )

”
C = O |Ψ(0)〉〈Ψ(0)|O† ρ(T ) = U |Ψ(0)〉〈Ψ(0)|U†

Equivalence to “normal” fidelity

tr
“
C†ρ(T )

”
=
X

n

D
n
˛̨̨
O
˛̨̨

Ψ(0)
ED

Ψ(0)
˛̨̨
O†U

˛̨̨
Ψ(0)

ED
Ψ(0)

˛̨̨
U†
˛̨̨
n
E

=
D

Ψ(0)
˛̨̨
U†
X˛̨̨

n
ED

n
˛̨̨
O
˛̨̨

Ψ(0)
ED

Ψ(0)
˛̨̨
O†U

˛̨̨
Ψ(0)

E
=
D

Ψ(0)
˛̨̨
U†O

˛̨̨
Ψ(0)

ED
Ψ(0)

˛̨̨
O†U

˛̨̨
Ψ(0)

E
=
˛̨̨D

Ψ(0)
˛̨̨
O†U

˛̨̨
Ψ(0)

E˛̨̨2

Michael Goerz Introduction to the GRAPE Algorithm



Fidelity through Backward- and Forward-Propagation

A trace is invariant under cyclic permutation of its factors!

Fidelity at T

Φ0 = 〈C |ρ(T )〉 =
D
C |UN . . .U1ρ(0)U†1 . . .U

†
N

E
=
D
U†j+1 . . .U

†
NCUN . . .Uj+1|Uj . . .U1ρ(0)U†1 . . .U

†
j

E
Propagated States → Fidelity at tj

λj ≡ U†j+1 . . .U
†
NCUN . . .Uj+1 bw. propagated optimal state

ρj ≡ Uj . . .U1ρ(0)U†1 . . .U
†
j fw. propagated initial state

Φ0 = 〈C |ρ(T )〉 =
˙
λj |ρj

¸
Note: all propagations with guess pulse!
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Calculation of Pulse Update

Pulse Update

uk (j) −→ uk (j) + ε
∂Φ0

∂uk (j)
We need to calculate

∂Φ0

∂uk (j)

Two steps:

For a variation δuk (j), calculate δUj

Use δUj to calculate ∂Φ0
∂uk (j)

Calculations are not completely trivial.

Solution:

Gradient

∂Φ0

∂uk (j)
= −

˙
λj |i∆t[Hk , ρj ]−

¸
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Grape Algorithm

Pulse Update

uk (j) −→ uk (j) + ε
∂Φ0

∂uk (j)
;

∂Φ0

∂uk (j)
= −

˙
λj |i∆t[Hk , ρj ]−

¸

Guess initial controls uk (j)

Update pulse according to gradient:

Forward propagation of ρ(0): calculate and store all ρj = Uj . . .U1ρ(0)U†1 . . .U
†
j

for j ∈ [1,N]

Backward propagation of C : calculate and store all λj = U†j+1 . . .U
†
NCUN . . .Uj+1

for j ∈ [1,N]

Evaluate ∂Φ0
∂uk (j)

and update the m × N control amplitudes uk (j)

Done if fidelity converges
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Variations

Non-Hermitian Operators

Φ1 = <[Φ0];
∂Φ1

∂uk (j)
= −

D
λx

j |i∆t[Hk , ρ
x
j

E
−
D
λy

j |i∆t[Hk , ρ
y
j

E
Φ2 = |Φ0|2 ;

∂Φ2

∂uk (j)
= −2<

˘˙
λj |i∆t[Hk , ρj

¸ ˙
ρy

N |C
¸¯

Unitary Transformations

Φ3 = <〈UF |U(T )〉 = <
D
U†j+1 . . .U

†
NUF |Uj . . .U1

E
= <

˙
Pj |Xj

¸
∂Φ3

∂uk (j)
= −<

˙
Pj |i∆tHkXj

¸
Φ4 = |〈UF |U(T )〉|2 =

˙
Pj |Xj

¸ ˙
Xj |Pj

¸
∂Φ4

∂uk (j)
= −2<

˘˙
Pj |i∆tHkXj

¸ ˙
Xj |Pj

¸¯
Also works with Lindbladt-Operators. Additional energy constraints are possible.
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Comparison with OCT

optimizations, where the performance can be expressed
in terms of the eigenvalues and eigenfunctions of the to-
tal propagator.

The paper is organized as follows. In Section 2, we
present the basic theoretical ideas and numerical optimi-
zation algorithms directly applicable to the problem of
pulse design. To illustrate the method, we present three
simple but non-trivial applications to coupled spin sys-
tems both in the presence and in the absence of relaxa-
tion. In Section 3.1, we look at the problem of finding
maximum coherence transfer achievable in a given time
and the design of pulse sequences that achieve this trans-
fer. In Section 3.2, the algorithm is used to find relaxa-
tion optimized pulse sequences that perform desired
coherence transfer operations with minimum losses. In
Section 3.3, we design pulse sequences that produce a
desired unitary propagator in a network of coupled
spins in minimal time. In all examples, we compare the
results obtained by the numerical optimization algo-
rithm with optimal solutions obtained by analytical
arguments based on geometric optimal control theory.
In the conclusion section, we discuss the convergence
properties of the proposed algorithm and possible
extensions.

2. Theory

2.1. Transfer between Hermitian operators in the absence
of relaxation

To fix ideas, we first consider the problem of pulse de-
sign for polarization or coherence transfer in the absence
of relaxation. The state of the spin system is character-
ized by the density operator q (t), and its equation of
motion is the Liouville–von Neuman equation [15]

_qðtÞ ¼ $i H0 þ
Xm

k¼1

ukðtÞHk

 !

; qðtÞ

" #

; ð1Þ

where H0 is the free evolution Hamiltonian, Hk are the
radiofrequency (rf) Hamiltonians corresponding to the
available control fields and u (t) = (u1 (t), u2 (t), . . .,um (t))
represents the vector of amplitudes that can be changed
and which is referred to as control vector. The problem
is to find the optimal amplitudes uk (t) of the rf fields that
steer a given initial density operator q (0) = q0 in a spec-
ified time T to a density operator q (T) with maximum
overlap to some desired target operator C. For Hermi-
tian operators q0 and C, this overlap may be measured
by the standard inner product

hCjqðT Þi ¼ tr CyqðT Þ
! "

: ð2Þ

(For the more general case of non-Hermitian operators,
see Section 2.2). Hence, the performance index U0 of the
transfer process can be defined as

U0 ¼ hCjqðT Þi: ð3Þ

In the following, we will assume for simplicity that
the chosen transfer time T is discretized in N equal steps
of duration Dt = T/N and during each step, the control
amplitudes uk are constant, i.e., during the jth step the
amplitude uk (t) of the kth control Hamiltonian is given
by uk (j) (cf. Fig. 1). The time-evolution of the spin sys-
tem during a time step j is given by the propagator

Uj ¼ exp $iDt H0 þ
Xm

k¼1

ukðjÞHk

 !( )

: ð4Þ

The final density operator at time t = T is

qðT Þ ¼ UN & & &U 1q0U
y
1 & & &U

y
N ; ð5Þ

and the performance function U0 (Eq. (3)) to be maxi-
mized can be expressed as

U0 ¼ hCjUN & & &U 1q0U
y
1 & & &U

y
N i: ð6Þ

Using the definition of the inner product (cf. Eq. (2))
and the fact that the trace of a product is invariant un-
der cyclic permutations of the factors, this can be rewrit-
ten as

U0 ¼ hU y
jþ1 & & &U

y
NCUN & & &Ujþ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kj

j Uj & & &U 1q0U
y
1 & & &U

y
j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

qj

i;

ð7Þ

where qj is the density operator q (t) at time t = jDt and
kj is the backward propagated target operator C at the
same time t = jDt. Let us see how the performance U0

changes when we perturb the control amplitude uk (j)
at time step j to uk (j) + duk (j). From Eq. (4), the change
in Uj to first order in duk (j) is given by

dUj ¼ $iDtdukðjÞHkUj ð8Þ

with

HkDt ¼
Z Dt

0

UjðsÞHkUjð$sÞds ð9Þ

Fig. 1. Schematic representation of a control amplitude uk (t),
consisting of N steps of duration Dt = T/N. During each step j, the
control amplitude uk (j) is constant. The vertical arrows represent
gradients dU0=dukðjÞ, indicating how each amplitude uk (j) should be
modified in the next iteration to improve the performance function U0.
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Ψin Ψtgt

ε(1)

ε(0)

tj

∆u(j) ∼
˙
Ψbw (tj ) |µ|Ψfw (tj )

¸
GRAPE also needs forward- and backward-propagation, but only with old pulse.
Propagated states also need to be stored.

Pulse update at point j in the current iteration does not depend on other
updated pulse values (non-sequential update)

All updates in GRAPE can in principle be calculated in parallel.

Convergence tends to be pretty lousy (so I’m told)

What about the choice of ε?
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Thank You!
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