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Solving the Schrodinger Equation

Schrodinger Equation

2wy = A e.g.ﬂ:(‘ljle((f)) 5;((’%)

W(t)) = e~ At |Wo) if A not time dependent
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Solving the Schrodinger Equation

Schrodinger Equation

2wy = A e.g.ﬂ:(‘ljle((f)) 5;((’%)

|W(t+ At)) = e—iRAE |W(t)) — piecewise constant pulses
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Solving the Schrodinger Equation

9 0 . o (VA(R)  pe(t)
5 VO =AV@);  eg A= (,ule(t) 52(,?))

|W(t+ At)) = e—iRAE |W(t)) — piecewise constant pulses

Evaluation of the Time Evolution Operator

N
Expand into series: e Mt — Z an P, ()
k=1
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Solving the Schrodinger Equation

9 0 . o (VA(R)  pe(t)
5 VO =AV@);  eg A= (,ule(t) 52(,?))

|W(t+ At)) = e—iRAE |W(t)) — piecewise constant pulses

Evaluation of the Time Evolution Operator

N
Expand into series: e Mt — Z an P, ()
k=1

cf. Runge-Kutta: solving the differential equation, instead of evaluating the analytical
solution
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Chebychev Polynomials

Properties of Chebychev polynomials
m Py =1, Pi(x) = x, Pa(x) = 2xPp_1(x) — Pa—2(x)

m Defined over range [—1, 1] — normalize Hamiltonian

N A— Eqinl
I"normZQTmm—]1

m Fastest converging polynomial expansion
m P,(x) = cos(nf) with 6 = arccos(x) — Cosine transform for coefficients

Chebychev coefficients

m Expansion coefficients a, for function f(x):

2 —dn0 /*1 f(x)Pn(x) d
= X
T 1 V1—x2

an

m For f(Fnom) = e~ Hnomt: 3, 5 Bessel functions.
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o V(D) = AV(®) + [o(2)



a A~
o V(D) = A() + [o(1))

Note: not the same as nonlinear SE:

eg. % () = (R+[W(0)1) 1v(o)
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OCT with State-Dependent Costs

II'IV (Ss+4d)

forbidden

15" (sers
, (5s+5p)

V(R)

e

1
X Z‘ (5s+5s)
4

Optimization Functional

‘Jl(t)>

J==Fvd+ [ gleNde+ [ vl gslv] =20 (V) Paton
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OCT with State-Dependent Costs

II'IV (Ss+4d)

forbidden

15" (sers
, (5s+5p)

V(R)

e

1
X Z‘ (5s+5s)
4

Optimization Functional

\Il(t)>

J==Fvd+ [ gleNde+ [ vl gslv] =20 (V) Paton

also: time-dependent targets
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Reminder: Krotov

@ backward propagation with old pulse

€nt— €Ent—
T T RN T

e e N P YN

Vi (to) Wbu(t) 200 Wou(t) v

"Ufw(T)
\Ufw(t wa(t)
A

5nt 2 6nt—l

@ forward propagation with new pulse

Pulse update by matching forward- and backward-propagated states

T
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Inhomogeneous Backward-Propagation

Daniel: Second Order Krotov Preprint (arXiv:1008.5126v1)

Optimization Functional

Pailow

J=—Fwd+ [elolde+ [alv@lds el = (¥

w(t))

Pulse Update

Ae o =am (XO(t) |l 6D (1) )

Backward Propagation

d i =
E'X(O)(t» = _gHT[‘p(O)ﬂ E(O)“X(O)(t)) + v<<,c|gl:r|4p(0)(t)

XO(T) = ~Vio 7| o7
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Inhomogeneous Backward-Propagation

Daniel: Second Order Krotov Preprint (arXiv:1008.5126v1)

Optimization Functional

allow

= —Fd+ [llde+ [@lv@ldn alv] =2 (¥(0)]P

w(t))

Pulse Update

Ae o =am (XO(t) |l 6D (1) )

Backward Propagation

d i~ &
=hO(e) = —< A", OO (1) + Pt [o0(1))

xO(T)) = Vo7l 07
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Solving the Inhomogeneous Schrodinger
Equation Numerically
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Treating the Inhomogeneity in Order m

Inhomogeneous SE

2 () = A ) + o)

Expansion of ®(t)

m—1

|D() = D |®)Pi(E)

j=

m Expand inhomogeneous term in Chebychev series
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Treating the Inhomogeneity in Order m

Inhomogeneous SE

2 () = A ) + o)

Expansion of ®(t)

[®(6)) le| >P(t)_ —} o)

m Expand inhomogeneous term in Chebychev series

m Reorder into power series (or use Taylor to begin with)
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Treating the Inhomogeneity in Order m

Inhomogeneous SE

2 () = A ) + o)

Expansion of ®(t)

[®(6)) le| >P(t)_ —} o)

Expand inhomogeneous term in Chebychev series
Reorder into power series (or use Taylor to begin with)
Decide on which order to solve: 1, 2, 3, maybe 4

The smaller the order, the smaller At has to be

Cli P for 6ding
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The Analytical Solution

Inhomogeneous SE (¢ to order m)

m—1 4

9 " t .
3¢ V() =HIV(e) + 3 ﬁ‘¢(1)>

Jj=0

V() (my = miljt—: ‘/\U)> + fm(F1) ‘,\("’)>
=0 J°

o iy [ RS Gy ) AT =)
m i A — A ‘Au—1>> n ‘¢u—1)>
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The Analytical Solution

Inhomogeneous SE (¢ to order m)

m—1 4

9 " t .
3¢ V() =HIV(e) + 3 ﬁ‘¢(1)>

Jj=0

V() (my = miljt—: ‘/\U)> + fm(F1) ‘,\("’)>
=0 J°

o iy [ RS Gy ) AT =)
m A — A ‘Au—1>> n ‘¢u—1)>

eg [W(6))3 = [Wo) + £|AD) + £ |AD) 1 () [A3), with
(A = (7il:|) - (e—"“f 1 iﬂt)
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The Analytical Solution

Inhomogeneous SE (@ to order m)

9 . m—1 tj )
= V() = A (e) + Z:; 109

m—

V() = Z '\ )+ £ () A

0

N m—1 _ A 0) = |W )
e [ e (—iAty ©
fm = (=iH) (e - ) XD = R[N 4+ [l

e.g. \‘U(t))(o) = e~ it [Wo) — homogeneous propagation

Cli P for 6ding



The Chebychev Propagator
The Inhomogeneous TDSE
Inhomogeneous Chebychev

Implementation

Chebychev Propagation

W (2)) () = mfjil PO + @[3y : y ~ fJo0) )

Jj=0

Evaluate f(H) by expanding it into Chebychev Polynomials
(just like for the “standard” Chebychev propagator with fo(H) = e/Ht)

C P for 6ding
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Chebychev Propagation

MO mfji. DY+ (P N5 3y~ {000}
=0 7

Evaluate f(H) by expanding it into Chebychev Polynomials

(just like for the “standard” Chebychev propagator with f(H) = ei':'t)

Algorithm Outline (for fixed m)

For each time step:
m determine {|¢U)>} and from that {)\U)}
m run through the Chebychev series for f,
m sum everything up, yielding |\|!(t))(m)

Cli P for 6ding



Details of the Algorithm
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Global Initialization (before any actual propagation)

Calculate Chebychev Coefficients

Calculate the Chebychev expansion coefficients a, for f(H), for the chosen order m.
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Global Initialization (before any actual propagation)

Calculate Chebychev Coefficients

Calculate the Chebychev expansion coefficients a, for fr(H), for the chosen order m.

m a, cannot be calculated analytically (like for the standard Chebychev)

m Calculation of a, is done through a fast cosine-transform:
N—1
2— 5/70
= ;} fm(6k) cos(nb)

A needs to be normalized — a, might have to be re-calculated if spectral radius
changes (after each OCT iteration)

m On a non-equidistant time grid, the a, would have to be re-calculated at every
time step

m For small H, the term (7i|:|)_m might lead to numerical instability. We could use
Taylor instead. ... 7
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Local Initialization (at every time step)

Calculate Expansion of Inhomogeneous Term

Calculate all necessary |<b(f)> (i.e. up to order m) to approximate the local ®(t;),
either by an intermediate Chebychev expansion, fallowed by calculation of coefficients
in the power series, or by a direct Taylor series.
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Local Initialization (at every time step)

Calculate Expansion of Inhomogeneous Term

Calculate all necessary |¢(j)> (i.e. up to order m) to approximate the local ®(t;),
either by an intermediate Chebychev expansion, fallowed by calculation of coefficients
in the power series, or by a direct Taylor series.

Calculation via Taylor:

m Calculate derivatives through FFT

Calculation via Chebychev:

m Sample ®(t) at intermediate points around t by interpolation
(splining should be fine)

m Calculate Chebychev coefficients |<T>j> by cosine transform

m Calculate |¢U)> from |<T>J> by formulas in References (just collect the powers)
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Propagation Step

V() (my = mi:lt—: ‘AU)> + fm(F) ‘/\(”’)>

=0t
= Calculate |AD), j=0...m—1

D) = —iR[AD) 4 |ol-D))
m Calculate () |/\(’")> by Chebychev recursion (Choose N to reach machine
precision)
N
Fin(F) Ay = 3 a0 Po() A7)
n=1
Pa(H) = 2AP,_1(A) — P,_(H)
m Calculate |\IJ(t)>(m)




Inhomogeneous Chebychev in QDYN
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Propagation Routines (prop.£90)

subroutine prop(psi, grid, ham, work, para, from_ti, to_ti, bw, &
& info_hook, pulses, alt_pulse, upd-hook, storage)

subroutine prop_step(psi, grid, ham, work, para, ti, bw, &

& pulses, alt_pulses, alt_pulse, upd-hook)

Cli P for 6ding
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Propagation Routines (prop.£90)

prop
subroutine prop(psi, grid, ham, work, para, from_ti, to_ti, bw, &
& info_hook, pulses, alt_pulse, upd-hook, storage)

prop with optional inhomogeneous term

subroutine prop(psi, grid, ham, work, para, from_ti, to_ti, bw, inh_psi, &
& get_inh_phi, info_hook, pulses, alt_pulse, upd hook, storage)

m inh psi: stored array of forward-propagated states

m get_inh phi: function that calculates |®) from |W) (e.g. Paiow |V)).

prop-step

subroutine prop_step(psi, grid, ham, work, para, ti, bw, &
& pulses, alt_pulses, alt_pulse, upd-hook)

prop_step with optional inhomogeneous term

subroutine prop_step(psi, grid, ham, work, para, ti, bw, inh.psi, &
& get_inh_phi, pulses, alt_pulses, alt_pulse, upd-hook)
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Calculation of Chebychev Coefficients

Calculate Chebychev Coefficients

Calculate the Chebychev expansion coefficients a,, for f,,,(l:l), for the chosen order m.

in inhom_cheby.f90:
subroutine init_inh _cheby(ham, wcheby, order, para)

m Use the same work array (wcheby) as for the homogeneous Chebychev
propagation.
m Sufficient a, are calculated and stored in wcheby to reach machine precision

m Watch out for numerical instability (— Taylor)
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Expansion of Inhomogeneous Term

Calculate Expansion of Inhomogeneous Term

Calculate all necessary |¢'(j)> (i.e. up to order m) to approximate the local ®(t;),
either by an intermediate Chebychev expansion, fallowed by calculation of coefficients
in the power series, or by a direct Taylor series.

in inhom_cheby.£90:
subroutine expand_inh_phi(inh_psi, get_inh phi, order, phi_coeffs)

m phi_coeffs stores the |(D(f)> (power series)
m invoke monic_transf to calculate |<I>(j)> from |<T>j>

Continue with calculation of |)\U)>:
subroutine get_inh lambda(lambda, phi, ham, ...)
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Performing the Propagation Step

V() (my =m2 “AU>>+fm(ﬂ)‘A(m>>

:0

in inhom_cheby.£90:
subroutine inhom_cheby(psi, work, ham, grid, lambda, para, dt, ti, &
& alt_pulses, alt_pulse)

m Identical interface to cheby, except for A

m Inhomogeneous Chebychev coefficients are implicit in work
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