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Classical Computing: 4-Bit Full Adder

XX X3Xy + Y1 Y2 Y3Yy = ZyZ212;2324

Inside the CPU:
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m 0 = low voltage
m 1 = high voltage

m Calculations:

>

)

OoH
o

I—t

logical functions
of bits
¢

mapped to electronic gates

m
Hrrroooo I
mroowrroo |
rorororo|()
mhmomooo |O
hoororeo|M

m Gates combine to more
ll—|-—ll=1ml‘m gate complex gates

\_ Y, ) m Gates can be decomposed
L 2008 into NAND-gates

from: http://de.wikipedia.org/w/inde

.php?title=Datei:4Bit_Add.png

Optimal Controlled Phasegates for Trapped Neutral Atoms


http://de.wikipedia.org/w/index.php?title=Datei:4Bit_Add.png

Quantum Computation

Quantum Computation with Ultracold Trapped Atoms

Theoretical Model and Optimization Method

Two Calcium Atoms at Short Internuclear Distance

Two Atoms at Long Distance under Strong Dipole-Dipole Interaction

A Single Qubit

Definition of a Single Qubit

[W)1g = @010) + a1 [1)

with
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Two Qubits

Definition of a Two-Qubit System

|‘~U>2q = ago |00) + a1 |01) + @10 |10) + a1 |11)
with

|00) = |0) ® |0) [01) = 10) ® |1)
|10) = 1) ® |0) [11) = (1) ® |1)

In general, |\Il)2q can be entangled, i.e. it cannot be written as a product state
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One and Two Qubit Gates

1 Qubit Gate: Hadamard 2 Qubit Gate: CNOT

CNOT
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Quantum Circuits

X1 XpX3Xy + Y1 Y2Y3Yy = 292123232

Inside the CPU:
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Quantum Circuits

X1 XpX3Xy + Y1 Y2Y3Yy = 292123232

Quantum Computation:

= Qubits:
m Eigenstates |0), |1)
m Superposition states
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Quantum Circuits

X1 XpX3Xy + Y1 Y2Y3Yy = 292123232

Quantum Computation:

= Qubits:
m Eigenstates |0), |1)
m Superposition states

~
W) = a0 [0) + o [1)
..
A famasas A|B|C|D|E _
— olofofolo m Calculations:
L E |°]e|:]¢]|z
B ] HEHHE unitary transformations
L:' 1flofolfo]2 of qubits
L i1|j0f1f1]o0 \L
110 1|0
C 1fafafa]: mapped to quantum gates
ﬂ:NANng‘e
k J LiLius 2005
from: http://de.wikipedia.org/w/index.php?title=Datei:4Bit_Add.png

Optimal Controlled Phasegates for Trapped Neutral Atoms


http://de.wikipedia.org/w/index.php?title=Datei:4Bit_Add.png

Quantum Computation

Q ion with Ul Id Trapped Atoms

Theoretlcal Model and Optimization Method

Two Calcium Atoms at Short Internuclear Distance

Two Atoms at Long Distance under Strong Dipole-Dipole Interaction

Quantum Circuits
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Figure 10.16. Quantum circuit for measuring the generators of the Steane code, to give the error syndrome. TI
top six qubits are the ancilla used for the measurement, and the bottom seven are the code qubits.

from: Nielsen, Chuang: Quantum Information and Quantum Computation

Quantum Computation:

m Qubits:
m Eigenstates |0), |1)
m Superposition states
W) = a0 [0) + o [1)

m Calculations:

unitary transformations
of qubits
1

mapped to quantum gates

m Gates combine to more
complex gates

m Gates can be decomposed
into single-qubit and CNOT
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Quantum Circuits
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Figure 10.16. Quantum circuit for measuring the generators of the Steane code, to give the error syndrome. TI

top six qubits are the ancilla used for the measurement, and the bottom seven are the code qubits.

from: Nielsen, Chuang: Quantum Information and Quantum Computation

A few explicit points:

Universal Gate Theorem:
only single-qubit gates and
(two-qubit) CNOT.

Restrictions on quantum
circuit due to unitarity

Power of quantum
computing:

Quantum Parallelism

But: complex wavefunctions
cannot be measured

— Clever algorithms like
Shor-algorithm for prime
decompositions

General problem:
Decoherence
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The Controlled Phasegate

Controlled Phasegate

ex 0 0 0
R 0 100
O(x) =CPHASEC) = | o o 1 o
0 0 0 1

Controlled-Not

m CPHASE(7) equivalent to CNOT = Universal Quantum Computing

m CPHASE is used in Quantum Fourier Transform
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Calcium Term Scheme — Qubit Encoding
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Two-Qubit Gates on Trapped Neutral Atoms

Calcium:
lp )
* ] L=
wp = 23652cm
1Sy — 10)

m Low-Lying states in Alkaline-Earth atoms or Rydberg states

m Atoms in optical lattice or optical tweezers
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The Objective

Q C ion with Ul

m QC with atomic collisions: adiabaticity = slow.

m Strong interaction = fast gates?
— only if ignoring motion.

Quantum Speed limit
m QSL: What is the maximum speed at which a quantum system can evolve?
m What limits on the gate duration can we find through optimization?

m How do gate durations depend on the interaction strength?
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The Objective

Problem

m QC with atomic collisions: adiabaticity = slow.

m Strong interaction = fast gates?
— only if ignoring motion.

Quantum Speed limit

m QSL: What is the maximum speed at which a quantum system can evolve?
m What limits on the gate duration can we find through optimization?

m How do gate durations depend on the interaction strength?

Outline arXiv:1103.6050

m Describe the system including the motional degree of freedom.
m Optimize for varying times / interaction strengths:

m Two Calcium atoms at fixed distance (fixed interaction):
vary T

m For fixed T, two atoms with “artificial” dipole-dipole interaction
V(R) = —C3/R3:
vary C3
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Two-Qubit-Hamiltonian, Optimization with Krotov
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System Hamiltonian
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System Hamiltonian
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The Logical Subspace

Full System Hamiltonian

l:l = (Fllq ® ]11q ar ]11q ® |:llq) ®1g + ]11q ® ]llq ® Fltrap AF I:|int

m Dimension of X 3 x Ng

A: 3
= Dimension of O: 4

= How does that work...?
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The Logical Subspace

Full System Hamiltonian

l:l = <F|1q ® ]11q ar ]11q ® |:llq) ®1g + ]11q ® ]11q ® Fltrap AF |:'int

m Dimension of A: 3 x 3 x Ng

= Dimension of O: 4

= How does that work...?

m 4 initial states: |ijpo) = |ij) ® |p0), i,j =0,1
with ¢g(R) the vibrational ground state of the harmonic trap.
m After pulse: projection onto logical subspace

m There should be no population left in the auxiliary electronic states
m The vibrational state after the pulse should again be |¢g(R)) (up to a phase factor)
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The Logical Subspace

Full System Hamiltonian

l:l = <F|1q ® ]11q ar ]11q ® |:llq) ®1g + ]11q ® ]11q ® Fltrap AF |:'int

m Dimension of A: 3 x 3 x Ngr

= Dimension of O: 4
= How does that work...?

m 4 initial states: |ijpo) = |ij) ® |p0), i,j =0,1
with ¢g(R) the vibrational ground state of the harmonic trap.
m After pulse: projection onto logical subspace
m There should be no population left in the auxiliary electronic states
m The vibrational state after the pulse should again be |¢g(R)) (up to a phase factor)
General concept! Having a logical subspace in a large Hilbert space of the physical
system is quite common in implementations of quantum computation.
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Optimal Control

Generally: we have some “knobs” that we can turn to influence the dynamics of a
system, and we want find the optimal way to turn them to reach a desired outcome.

E.g. Curling:

m the goal: bring the stone as close as possible to the target at time T
m “Static control”: speed, direction, and spin of thrown rock

m “Dynamic control” (at every point in time): sweeping
m where to sweep
m how hard to sweep

m take into account physical constraints: boundaries of the playing field, sweeping
speed and strength of players
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Optimal Control

Generally: we have some “knobs” that we can turn to influence the dynamics of a
system, and we want find the optimal way to turn them to reach a desired outcome.

In Quantum Mechanics:
m Drive a quantum state from an initial to a target state (or unitary transformation)

m System dynamics given by Hamiltonian

m Control: some parameter in the Hamiltonian; in our case: amplitude of laser
pulse over time.

m Take into account constraints, e.g. finite pulse amplitude

= iterative optimization algorithms
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Optimizing the Laser Pulse

Target Functional

.
1 . & o CPHASE
J=— e [tr (0 U)] +/%Ae (t)dt; _ iR
—_——
F

o O
I

Krotov: pulse update Ac [1)e——0 S« —e0]11)
minimizing J

Ae ~ Jm <\Ubw ‘)a" wfw)

(\. a
Palao, Kosloff, |01>.\—>“ 0/o1)
PRA 68, 062308 (2003) !
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The Krotov Algorithm

o €1 ~ o €2 ~ o €nt—2 ~ = €nt—1 ~
P P P o
Wiw (o) Wi (t) . Wy (t) v,

Q Q i - =
- Ve (T)
v; ‘Vfw(f) V(1)
~_ \/ ~_
S~ g /‘

gnt—l -
m Propagate target state backward with guess pulse

m Calculate pulse update

m Propagate forward with updated pulse
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Measures of Merit

Fidelity F and cost functional J are not very informative.

Control over the Motional Degree of Freedom

Foo =

<oo¢o ‘U(T,O; o)

o)

Does |00) return to it's initial vibrational eigenstate?

00¢0)) )

dop = arg (<00¢o ‘IAJ(T,O; o)

What is the phase change relative to the initial state?
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Cartan Decomposition

Local Two-Qubit Gate

0
_ 0
1
0

(€ 9ot 9)

Distinguish local two-qubit gate from non-local gate like CNOT, that cannot be
decomposed this way! (cf. product states vs entangled states)

= O O O

0 1
1 0
0 0
0 0

Cartan Decomposition Zhang et al. PRA 67, 042313 (2003)

0 = kiAko
k1, ko: local operations; A: purely non-local operation
m Only A has entangling power

m Cartan decomposition defines equivalence class of two-qubit gates
(“Locally equivalent”)
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Measures of Merit

Fidelity F and cost functional J are not very informative.

Control over the Motional Degree of Freedom

Foo = ‘<oo¢o ‘G(T,O; oPt)

2
o)
Does |00) return to it's initial vibrational eigenstate?

doo = arg (<oo¢o ‘U(T,O; €°Pt) oo¢o)>>

What is the phase change relative to the initial state?

True Two-Qubit Phase
Cartan Decomposition leads to  x = ¢oo — do1 — P10 + P11

Concurrence (Entanglement) C = [sin |

Optimal Controlled Phasegates for Trapped Neutral Atoms



Two Calcium Atoms at Short Internuclear Distance

For which gate durations can we reach a high-fidelity CPHASE?
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Parameters of the Optimization

Short internuclear distance
= sufficient interaction

- Peak intensity €
to induce 1 Rabi cycle

m Pulse duration between Ti}]t’ad = 1.23 ps and T, = 800 ps

|0a)

1rad
Tine

T, |00)

|00) K
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Optimization Success over Pulse Duration

1
0.9
0.8
0.7
0.6 \ ““100 gy
0.5 v A BRI ]
0.4 i PN ,,*"' T E 1]
A4+~ /e 2;

/ 1072 F
0.3 ,X E 1-—(F,x, Fpp)
| se” sl

0.2 x¢ 1073 5 e .
0.1 | 1 | 1 1

10° 10" 10?

pulse duration T' (ps)

= For small T, vibrational purity is lost with increasing two-qubit phase

= High two-qubit phase and high vibrational only for long pulse durations
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System Dynamics for 800 ps Pulse

1

g < =z
3 T £
& 5= @
g 02f

0 L L L L L L L -10 -1 I

0100 200 300 400 500 600 700 800 ’

time ¢ (ps) 1

! [ ——
B
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o ©
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= 1
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= R [10] R[]
g
<

— (] . opt
233 234 235 236 237 238 2.39 To0 = <00‘F’0 )U(T,O, € )‘ 009"0>
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The Reduced Optimization Scheme

full reduced
|00) — €/(¢+¢T) |00)
|01> _y eitT |01> |00> N ei(¢+¢T) |00>
target i .
|10) — €47 |10) |0y — /T /2 |0)
[11) — €/¢7T|11)
b00 = ¢00
gate phases b10 = do1 =¢o+ 1
11 =2¢
-local
gﬁzseoca X = ¢o0 — ¢o1 — P10 + P11 X = $oo — 260
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Two Atoms at Long Distance under Strong
Dipole-Dipole Interaction

Can we avoid vibration with very short pulses, but very strong interaction?
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Parameters of the Optimization

m Fixed short pulse duration
T=1ps, T=05ps

m Realistic lattice spacing
with strong interaction ~ —%

m Vary G3:

m G =1x10°
Action over 1 ps for Calcium at
d =5 nm, scaled to d = 200 nm

m Increase by three orders of magnitude
Action over 800 ps for Calcium at
d = 5 nm, scaled to d = 200 nm

o d =200 nm 0

- 1= |Oa>
G =1x 10°
\ :
| G =1x10°
|
00
4 |00)
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Optimization Success over Dipole Interaction Strength

1'} T RN RN RN '
0.9
0.8
0.7
0.6
0.5
0.4 .2
0.3 L ,;,’/ F(lps) —+ (05ps) -&- |
0.2 |- x (1ps) -%- (0.5ps) -= |
0.1 Lx>r Foo (1 ps) -+*- (05ps) -o- _
O \\q Il \\\\\\\‘ Il \\\\\\\‘ Il \\\\\\\‘

10° 107 10% 10°

interaction strength Cs (atomic units)

= Increasing two-qubit-phase with increasing interaction strength

= For small T, vibrational purity is lost with increasing two-qubit phase
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Conclusions

0.4 - e
0.3 L7 F(lps) —= (05 ps) —@-
L Pl 1ps) =-%- (0.5ps
B mm i
0.2 1073 5 w v oo 0 HT_ T R R
ol vl 108 107 10° 10°
10° 10 10 10°

pulse duration T (ps) interaction strength C (atomic units)

m Long gate duration can reach arbitrarily high fidelities.

m For short gate durations, the two-qubit phase is at the expense of the vibrational
purity.

m If T < QSL, not all measures of merit can be fulfilled.

m Time scale for a successful gate is determined by max ( Tint, Tyip)-
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